Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical simulation of flow boiling from an artificial cavity in a microchannel
Date
2016-06-01
Author
Jafari, Rahim
Okutucu Özyurt, Hanife Tuba
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
Cahn Hilliard phase-field method is used to numerically simulate subcooled water boiling in which nucleation occurs from an artificial cavity on the inner surface of a microchannel. The boiling initiates from a cavity and the growth and departure of the nucleated bubbles from the cavity are simulated. The velocity, temperature and pressure distributions inside the microchannel have been analyzed. The bubble generation frequency increases by increasing inlet mass flux. For this case of study, the rising trend continues up to the mass flux of 64 kg/m(2) s. Further increase in the inlet mass flux does not accelerate the bubble formation. The radius and the shape of the generated bubble compared well with experimental data available in the literature.
Subject Keywords
Bubble nucleation
,
Numerical simulation
,
Evaporation
,
Microchannel
,
Subcooled water
,
Artificial cavity
URI
https://hdl.handle.net/11511/56484
Journal
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
DOI
https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.028
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Numerical Solution of MHD Incompressible Convection Flow in Channels
Gurbuz, Merve; Tezer, Münevver (2019-1-01)
The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and tempera...
Numerical and analytical investigation of aerosol acoustics through ducts
Arslan, Ersen; Çalışkan, Mehmet; Department of Mechanical Engineering (2017)
The aim of this thesis is to develop a numerical approach which can solve the sound propagation problem in air-filled circular duct containing water droplets (regarded as an aerosol) in order to obtain acoustic absorption and dispersion characteristics of the system. There exist several analytical approaches in literature for treatment of basic aerosol problems with certain limitations; however; in order to solve rather complex cases, these limitations must be handled and worked out. In this study, a couple...
Modelling of asymmetric membrane formation
Mchugh, A.j.; Yılmaz, Levent (American Chemical Society; 1986-09-01)
Asymmetric membranes are generally prepared by the phase inversion techniques, the principal steps of which involve casting a thin film of a homogeneous polymer solution onto a suitable substrate, followed by quenching in a nonsolvent bath to precipitate the membrane film. Since most studies of the process has been concerned with the development of specific preparation recipies, explanations of structure formation have generally been ad-hoc and qualitative. This paper presents the results of recent modellin...
3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian-Eulerian (ALE) method
Jafari, Rahim; Okutucu Özyurt, Hanife Tuba (2016-01-01)
The arbitrary Lagrangian-Eulerian method (ALE) is used to model the hydrodynamics and the heat transfer of an elongated vaporized bubble in a rnicrotube. The Navier-Stokes equations along with the energy equation are solved in ALE description as a single fluid with two subdomains and a moving mesh at the interface of the liquid and the vapor phases. The numerical framework is the commercial CFD code COMSOL multiphysics with the finite element method, which has been improved by external functions to the phas...
Simulation of laminar microchannel flows with realistic 3D surface roughness
Akbaş, Batuhan; Sert, Cüneyt; Department of Mechanical Engineering (2019)
Effects of flow development and surface roughness on the pressure drop characteristics of laminar liquid flowsinside microchannels are investigated numerically using OpenFOAM. Channels with square cross section of 500 μm×500 μmand length of 80 mm are studied. Top surface of the channels are artificially roughened using thespatial frequency methodto create 8 different roughness profiles. Scaling the relative roughness ({u1D700}) values of each profile to three different values (1.0, 2.5and5.0 %),a total of 2...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Jafari and H. T. Okutucu Özyurt, “Numerical simulation of flow boiling from an artificial cavity in a microchannel,”
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
, pp. 270–278, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56484.