Frobenius action on Carter subgroups

Let G he a finite solvable group and H be a subgroup of Aut(G). Suppose that there exists an H-invariant Carter subgroup F of G such that the semidirect product FH is a Frobenius group with kernel F and complement H. We prove that the terms of the Fitting series of C-G (H) are obtained as the intersection of C-G (H) with the corresponding terms of the Fitting series of G, and the Fitting height of G may exceed the Fitting height of C-G (H) by at most one. As a corollary it is shown that for any set of primes pi, the terms of the pi-series of C-G (H) are obtained as the intersection of C-G (H) with the corresponding terms of the pi-series of G, and the pi-length of C may exceed the pi-length of C-G (H) by at most one. These theorems generalize the main results in [E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1-11] obtained by Khukhro.


Betti numbers of fixed point sets and multiplicities of indecomposable summands
Öztürk, Semra (Cambridge University Press (CUP), 2003-04-01)
Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set X-Cn and the multiplicities of indecomposable summands of M considered as a kC(n)-module are related via a localization theorem in equivariant cohomology, where C-n is a cyclic subgroup of G of order n. Explicit formulas are given for n = 2 and n = 4.
Chirality of real non-singular cubic fourfolds and their pure deformation classification
Finashin, Sergey (Springer Science and Business Media LLC, 2020-02-22)
In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
Cyclic intersections and control of fusion
Isaacs, I. M.; Kızmaz, Muhammet Yasir (Springer Science and Business Media LLC, 2019-12-01)
Let H be a subgroup of a finite group G, and suppose that H contains a Sylow p-subgroup P of G. Write N=NG(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = \mathbf{N}_{G}(H)$$\end{document}, and assume that the Sylow p-subgroups of H boolean AND Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep...
Class groups of dihedral extensions
Lemmermeyer, F (Wiley, 2005-01-01)
Let L/F be a dihedral extension of degree 2p, where p is an odd prime. Let KIF and k/F be subextensions of L/F with degrees p and 2, respectively. Then we will study relations between the p-ranks of the class groups Cl(K) and Cl(k).
Citation Formats
G. Ercan, “Frobenius action on Carter subgroups,” INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, pp. 1073–1080, 2020, Accessed: 00, 2020. [Online]. Available: