Class groups of dihedral extensions

Download
2005-01-01
Lemmermeyer, F
Let L/F be a dihedral extension of degree 2p, where p is an odd prime. Let KIF and k/F be subextensions of L/F with degrees p and 2, respectively. Then we will study relations between the p-ranks of the class groups Cl(K) and Cl(k).
MATHEMATISCHE NACHRICHTEN

Suggestions

REGULARITY OF QUOTIENTS OF DRINFELD MODULAR SCHEMES
Kondo, Satoshi; Yasuda, Seidai (Mathematical Sciences Publishers, 2020-02-01)
Let A be the coordinate ring of a projective smooth curve over a finite field minus a closed point. For a nontrivial ideal I subset of A, Drinfeld defined the notion of structure of level I on a Drinfeld module.
Frobenius action on Carter subgroups
Ercan, Gülin (World Scientific Pub Co Pte Lt, 2020-08-01)
Let G he a finite solvable group and H be a subgroup of Aut(G). Suppose that there exists an H-invariant Carter subgroup F of G such that the semidirect product FH is a Frobenius group with kernel F and complement H. We prove that the terms of the Fitting series of C-G (H) are obtained as the intersection of C-G (H) with the corresponding terms of the Fitting series of G, and the Fitting height of G may exceed the Fitting height of C-G (H) by at most one. As a corollary it is shown that for any set of prime...
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
Chirality of real non-singular cubic fourfolds and their pure deformation classification
Finashin, Sergey (Springer Science and Business Media LLC, 2020-02-22)
In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.
PERTURBATIONS OF NONASSOCIATIVE BANACH ALGEBRAS
Dosi, Anar (Rocky Mountain Mathematics Consortium, 2009-01-01)
In this note we prove that if either 21 is a Banach-Jordan algebra or a Banach-Lie algebra then all perturbations of the multiplication in 21 give algebras topologically isomorphic with 21 whenever certain small-dimension cohomology groups associated with 21 are vanishing.
Citation Formats
F. Lemmermeyer, “Class groups of dihedral extensions,” MATHEMATISCHE NACHRICHTEN, pp. 679–691, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63697.