Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Bayesian Learning and Relevance Vector Machines Approach for Downscaling of Monthly Precipitation
Date
2015-04-01
Author
OKKAN, UMUT
İnan, Gül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
In this study, statistical downscaling of large-scale general circulation model (GCM) simulations to monthly precipitation of Kemer Dam, in Turkey, has been performed through relevance vector machines (RVMs). All possible regression methods along with statistical measures have been used to select potential predictors through reanalysis data providing air850, hgt850, and prate variables as the optimal. The determined explanatory variables are then used for training RVM-based statistical downscaling model. A least-squares support vector machine (LSSVM)-based downscaling model is also constructed to compare the downscaling performance of RVM through some performance evaluation measures such as R-2, AdjR(2) and RMS error (RMSE). Because RVM is able to obtain the better modeling accuracy in terms of all performance measures during the testing period, third-generation coupled climate model (CGCM3) simulations run through the trained RVM to obtain future scenario results. The effectiveness of the RVM model is illustrated through its integration to climate scenarios (20C3M and A2). The statistical significance of the probable changes obtained with used methods is examined by Mann-Whitney U (M-W) and t-tests considering scenario forecasts. According to pessimistic A2 scenario results, statistically significant decreasing trends are foreseen for both seasonal and annual precipitation in the study basin. (C) 2014 American Society of Civil Engineers.
Subject Keywords
Civil and Structural Engineering
,
General Environmental Science
,
Water Science and Technology
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/56529
Journal
JOURNAL OF HYDROLOGIC ENGINEERING
DOI
https://doi.org/10.1061/(asce)he.1943-5584.0001024
Collections
Department of Statistics, Article