Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
LYAPUNOV-TYPE INEQUALITIES FOR PLANAR LINEAR DYNAMIC HAMILTONIAN SYSTEMS
Download
index.pdf
Date
2013-04-01
Author
Bohner, Martin
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
131
views
78
downloads
Cite This
We give new Lyapunov-type inequalities for linear Hamiltonian systems on arbitrary time scales, which improve recently published results and hence all the related ones in the literature. As an application, we obtain new diconjugacy criteria for linear Hamiltonian systems.
Subject Keywords
Applied Mathematics
,
Analysis
,
Discrete Mathematics and Combinatorics
URI
https://hdl.handle.net/11511/56649
Journal
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS
DOI
https://doi.org/10.2298/aadm130211004b
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On Lyapunov inequality in stability theory for Hill's equation on time scales
Atici, FM; Guseinov, GS; Kaymakcalan, B (Springer Science and Business Media LLC, 2000-01-01)
In this paper we obtain sufficient conditions for instability and stability to hold for second order linear Delta -differential equations on time scales with periodic coefficients.
Oscillation of Higher-Order Neutral-Type Periodic Differential Equations with Distributed Arguments
Dahiya, R. S.; Zafer, A. (Springer Science and Business Media LLC, 2007)
We derive oscillation criteria for general-type neutral differential equations [x(t) +αx(t− τ) +βx(t +τ)](n) = δ b ax(t − s)dsq1(t,s) + δ d c x(t + s)dsq2(t,s) = 0, t ≥ t0, where t0 ≥ 0, δ = ±1, τ > 0, b>a ≥ 0, d>c ≥ 0, α and β are real numbers, the functions q1(t,s) : [t0,∞) × [a,b] → R and q2(t,s):[t0,∞) × [c,d] → R are nondecreasing in s for each fixed t, and τ is periodic and continuous with respect to t for each fixed s. In certain special cases, the results obtained generalize and improve s...
Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients
ÖZBEKLER, ABDULLAH; Wong, J. S. W.; Zafer, Ağacık (Elsevier BV, 2011-07-01)
In this paper we give new oscillation criteria for forced super- and sub-linear differential equations by means of nonprincipal solutions.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Matrix measure approach to Lyapunov-type inequalities for linear Hamiltonian systems with impulse effect
Kayar, Zeynep; Zafer, Ağacık (Elsevier BV, 2016-08-01)
We present new Lyapunov-type inequalities for Hamiltonian systems, consisting of 2n-first-order linear impulsive differential equations, by making use of matrix measure approach. The matrix measure estimates of fundamental matrices of linear impulsive systems are crucial in obtaining sharp inequalities. To illustrate usefulness of the inequalities we have derived new disconjugacy criteria for Hamiltonian systems under impulse effect and obtained new lower bound estimates for eigenvalues of impulsive eigenva...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Bohner and A. Zafer, “LYAPUNOV-TYPE INEQUALITIES FOR PLANAR LINEAR DYNAMIC HAMILTONIAN SYSTEMS,”
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS
, pp. 129–142, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56649.