Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions
Date
2005-10-05
Author
Gulmus, SA
Yılmazer, Ülkü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
For especially highly concentrated suspensions, slip at the wall is the controlling phenomenon of their rheological behavior. Upon correction for slip at the wall, concentrated suspensions were observed to have non-Newtonian behavior. In this study, to determine the true rheological behavior of model concentrated suspensions, "multiple gap separation method" was applied using a parallel-disk rheometer. The model suspensions studied were polymethyl methacrylate particles having average particle sizes, in the range of 37-231 mu m, in hydroxyl terminated polybutadiene. The effects of particle size and solid particle volume fraction on the wall slip and the true viscosity of model concentrated suspensions were investigated. It is observed that, as the volume fraction of particles increased, the wall slip velocity and the viscosity corrected for slip effects also increased. In addition, for model suspensions in which the solid volume fraction was >= 81% of the maximum packing fraction, non-Newtonian behavior was observed upon wall slip correction. On the other hand, as the particle size increased, the wall slip velocity was observed to increase and the true viscosity was observed to decrease. (c) 2005 Wiley Periodicals, Inc.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/56663
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.21928
Collections
Graduate School of Natural and Applied Sciences, Article