Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson S-B statistical distribution function

2010-05-01
Biber, Erkan
Gündüz, Güngör
MAVİŞ, BORA
Colak, Uner
The impact strength of Nylon 6 can be further improved by blending it with ethylene-butyl acrylate-maleic anhydride elastomer. The blending is achieved in solution phase. Due to incompatibility of Nylon 6 and the elastomer, a special mixture of solvents is used to dissolve both components. The solution is electrospun, and the effects of the process parameters on the expected radii of nanofibers are investigated. The effects of process parameters such as polymer concentration in solution, electrical field, diameter of the syringe needle, feed rate, and collector geometry on nanofibers were investigated. Statistical analysis is carried out using the Johnson S-B distribution. A relation is proposed to relate the effect of the process parameters feed rate, electrical voltage, and tip to collector distance on the expected diameter of fibers. It is found that concentration and electrical field have a profound effect on the diameter of fibers compared to those of the syringe diameter and feed rate.
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING

Suggestions

Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide
Varsavas, S. Deniz; Kaynak, Cevdet (2018-06-01)
The purpose of this study was to investigate how optimum mechanical properties (strength-modulus-toughness) of inherently very brittle polylactide (PLA) could be obtained by reinforcing with E-glass fibers (GF) and blending with thermoplastic polyurethane elastomer (TPU). Composites and blends were compounded by twin-screw extruder melt mixing, while specimens were shaped by injection molding. SEM analyses revealed that 15 wt% GF and 10 wt% TPU domains, alone and together, could be uniformly distributed in ...
Effects of polyamide 6 incorporation to the short glass fiber reinforced ABS composites: an interfacial approach
Ozkoc, G; Bayram, Göknur; Bayramli, E (2004-12-01)
The properties of 30 wt% short glass fiber (SGF) reinforced acrylonitrile-butadiene-styrene (ABS) terpolymer and polyamide 6 (PA6) blends prepared with extrusion were studied using the interfacial adhesion approach. Work of adhesion and interlaminar shear strength values were calculated respectively from experimentally determined interfacial tensions and short beam flexural tests. The adhesion capacities of glass fibers with different surface treatments of organosilanes were evaluated. Among the different s...
Effect of fiber type and concrete strength on the energy absorption capacity of fiber reinforced concrete plates under quasi-static bending
Mercan, Ali Macit; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
With all the known solid advantages of concrete, it has also limitations in its mechanical properties, such as low ductility, tensile strength and energy absorption capacity/toughness. In order to eliminate or minimize these limitations, some developments have been worked up by introducing natural or artificial fibers into the concrete mixture. The main scope of this thesis is to observe the effect of different fiber types and dosages on the performance of two different concrete grades. Two steel fibers wit...
Effects of optical design modifications on thermal performance of a highly reflective HfO2/SiO2/TiO2 three material coating
OCAK, M.; Sert, Cüneyt; Okutucu-Ozyurt, T. (Springer Science and Business Media LLC, 2018-02-01)
Effects of layer thickness modifications on laser induced temperature distribution inside three material, highly reflective thin film coatings are studied with numerical simulations. As a base design, a 21 layer coating composed of HfO2, SiO2 and TiO2 layers of quarter wave thickness is considered. First, the laser induced temperature distribution in this base design is obtained. Then the layer thicknesses of the base design are modified and the corresponding temperature distributions in four alternative no...
Effects of microcompounding process parameters on the properties of ABS/polyamide-6 blends based nanocomposites
Oezkoc, Gueralp; Bayram, Göknur; Quaedflieg, Martin (Wiley, 2008-03-05)
Melt intercalation method was applied to produce acrylonitrile-butadiene-styrene/polyamide-6 (ABS/ PA6) blends based organoclay nanocomposites using a conical twin-screw microcompounder. The blend was compatibilized using a maleated olefinic copolymer. The effects of microcompounding conditions such as screw speed, screw rotation-mode (co- or counter-), and material parameters such as blend composition and clay loading level on the morphology of the blends, dispersibility of nanoparticles, and mechanical pr...
Citation Formats
E. Biber, G. Gündüz, B. MAVİŞ, and U. Colak, “Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson S-B statistical distribution function,” APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, pp. 477–487, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56680.