Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling and analysis of surface roughness of microchannels produced by mu-WEDM using an ANN and Taguchi method
Date
2017-11-01
Author
Jafari, Rahim
Kahya, Muge
Oliaei, Samad Nadimi Bavil
ÜNVER, HAKKI ÖZGÜR
Okutucu Özyurt, Hanife Tuba
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
157
views
0
downloads
Cite This
Microchannel heat exchangers are used to remove the high heat fluxes generated in compact electronic devices. The roughness of the microchannels has a significant effect on the heat transfer characteristics, especially the nucleate boiling and pumping power. Therefore, development of predictive models of surface texture is of significant importance in controlling heat transfer characteristics of these devices. In this study, micro-Wire electrical discharge machining (mu-WEDM) was employed to fabricate metal-based microchannel heat sinks with different surface textures. First, experiments were conducted to achieve the desired surface roughness values. Oxygen-free copper is a common material in the cooling systems of electronic devices because of its high thermal conductivity and low cost. Design of experiment approach based on the Taguchi technique was used to find the optimum set of process parameters. An analysis of variance is also performed to determine the significance of process parameters on the surface texture. An artificial neural network model is utilized to assess the variation of the surface roughness with process parameters. The predictions are in very good agreement with results yielding a coefficient of determination of 99.5 %. The results enable to determine mu-WEDM parameters which can result in the desired surface roughness, to have a well-controlled flow and heat transfer characteristics for the microchannels.
Subject Keywords
Microchannel
,
Surface Roughness
,
Taguchi Method
,
Wire Electrical Discharge Machining
URI
https://hdl.handle.net/11511/56697
Journal
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1007/s12206-017-1039-7
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Modeling of the rectifier of a mini absorption cooling device using ceramic hollow fiber membranes
Ozkan, Onur; Güvenç Yazıcıoğlu, Almıla; Baker, Derek Keıth (2015-05-20)
Miniaturized and mobile absorption cooling devices may be used in many applications, but effective and small size heat and mass exchangers are required. Ceramic hollow fiber membranes are thermally stable so that they can be used for the rectification of ammonia in an absorption cooling device. In this paper the simultaneous heat and mass transfer between the ammonia-water vapor and the reflux liquid is modeled in a rectifier with hydrophobic ceramic hollow fiber membranes. A similar model is used to simula...
Modeling of multidimensional heat transfer in a rectangular grooved heat pipe /
Odabaşı, Gülnihal; Dursunkaya, Zafer; Department of Mechanical Engineering (2014)
Heat pipes are generally preferred for electronics cooling application due to large heat transfer capacity in spite of small size. Micro heat pipes use small channels, whose dimension is on the order of micrometers, to generate necessary capillary action maintaining fluid flow for heat pipe operation. In the present study a flat micro heat pipe with rectangular cross section is analyzed numerically. A simplified axial fluid flow model is utilized to find liquid-vapor interface shape variation along the heat...
Estimation of steady-state temperature distribution in power transformer by using finite difference method
Gözcü, Ferhat Can; Ertaş, Arif; Department of Electrical and Electronics Engineering (2010)
Estimating the temperature distribution in transformer components in the design stage and during the operation is crucial since temperatures above the thermal limits of these components might seriously damage them. Thermal models are used to predict this vital information prior to actual operations. In this study, a two-dimensional, steady-state model based on the Finite Difference Method (FDM) is proposed to estimate the temperature distribution in the three-phase, SF6 gas insulatedcooled power transformer...
PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION
Atay, Atakan; Sariarslan, Busra; Kuscu, Yigit F.; Saygan, Samet; Akkus, Yigit; Gurer, A. Turker; Cetin, Barbaros; Dursunkaya, Zafer (2019-01-01)
Heat pipes are widely used in thermal management of high heat flux devices due to their ability of removing high heat loads with small temperature differences. While the thermal conductivity of standard metal coolers is approximately 100-500 W/m.K, effective thermal conductivities of heat pipes, which utilize phase-change heat transfer, can reach up to 50,000 W/m.K. In industrial applications, commercially available heat pipes are commonly preferred by thermal engineers due to their low cost and versatility...
Implementation of metal-based microchannel heat exchangers in a microrefrigeration cycle, and numerical and experimental investigation of surface roughness effects on flow boiling
Jafari Khousheh Mehr, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
A microscale vapor compression refrigeration cycle has been constructed for possible application in the thermal management of compact electronic components. The micro-evaporator and micro-condenser components have been fabricated using wire electron discharge machining and micromilling, respectively. Three microevaporators have been manufactured with different surface roughness for the experimental and numerical investigation of roughness effect on nucleate flow boiling in microchannels. In the numerical pa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Jafari, M. Kahya, S. N. B. Oliaei, H. Ö. ÜNVER, and H. T. Okutucu Özyurt, “Modeling and analysis of surface roughness of microchannels produced by mu-WEDM using an ANN and Taguchi method,”
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
, pp. 5447–5457, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56697.