Finite Element Domain Decomposition Method for Rough Sea Surface Scattering

2019-12-31
ÖZGÜN, ÖZLEM
Kuzuoğlu, Mustafa
Full-wave solution of electromagnetic wave scattering from rough sea surfaces is achieved by the Finite Element Domain Decomposition (FEDD) method. The method is implemented in a non-iterative manner by dividing the computational domain into overlapping subdomains, and solving the problem in each subdomain by attaching Locally-Conformal Perfectly Matched Layer (LC-PML) at the truncation boundaries. Statistical behavior of the Radar Cross Section (RCS) is investigated by Monte Carlo simulations. The results are compared with those obtained by the standard FEM, analytical models and measurements for different polarizations, frequencies, grazing angles and wind speeds.

Suggestions

Modeling and Predicting Surface Roughness via Transformation Optics
Ozgun, O.; Kuzuoğlu, Mustafa (2014-08-28)
Monte Carlo analysis of surface roughness in electromagnetic scattering problems is presented by using the principles of transformation electromagnetics/optics in finite methods. The main motivation in the proposed approach is to eliminate the need of mesh generation for each surface in repeated Monte Carlo realizations, and hence, to devise a faster model in predicting surface roughness. A single, simple and uniform mesh is employed assuming a smooth surface and ignoring the actual surface, and thereafter,...
Finite element modeling of scattering from objects in rectangular waveguides
Gülbaş, Hüseyin; Kuzuoğlu, Mustafa; Özlem, Özgün; Department of Electrical and Electronics Engineering (2017)
Numerical analysis of scattering parameters of split ring resonators which are one of the microwave circuit elements is performed by the Finite Element Method in this thesis. The fundamentals of the model and analysis method will be discussed firstly. Afterwards, the basics of Finite Element Method including weak variational form of the wave equation, 3D formulations and application to scattering parameters will be presented. The concepts of Perfectly Matched Layer and resonators will be examined in detail....
A Numerical Model for Investigating the Effect of Rough Surface Parameters on Radar Cross Section Statistics
Kuzuoğlu, Mustafa (2017-07-14)
Electromagnetic scattering from rough surfaces is modeled by combining the periodic finite element method and the transformation electromagnetics approach. The behavior of the radar cross section (RCS) at both specular and backscattering directions is analyzed as a function of rms height and correlation length with the help of Monte Carlo simulations. The concept of backscattering enhancement is illustrated, and some conclusions are drawn about the RCS statistics.
Investigation of rough surface scattering of electromagnetic waves using finite element method
Aşırım, Özüm Emre; Kuzuoğlu, Mustafa; Özgün, Özlem; Department of Electrical and Electronics Engineering (2013)
This thesis analyzes the problem of electromagnetic wave scattering from rough surfaces using finite element method. Concepts like mesh generation and random rough surface generation will be discussed firstly. Then the fundamental concepts of the finite element method which are the functional form of a given partial differential equation, implementation of the element coefficient matrices, and the assemblage of elements will be discussed in detail. The rough surface and the overall mesh geometry will be imp...
Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection
Cibik, Aytekin; Kaya Merdan, Songül (2013-02-01)
This paper presents a projection-based stabilization method of the double-diffusive convection in Darcy-Brinkman flow. In particular, it is concerned with the convergence analysis of the velocity, temperature and concentration in the time dependent case. Numerical experiments are presented to verify both the theory and the effectiveness of the method. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Citation Formats
Ö. ÖZGÜN and M. Kuzuoğlu, “Finite Element Domain Decomposition Method for Rough Sea Surface Scattering,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56719.