Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Femtosecond laser written waveguides deep inside silicon
Date
2017-08-01
Author
Pavlov, Ihor
Pavlova, S.
Kadan, V.
Makey, G.
Turnali, A.
Yavuz, O.
Ilday, F. O.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 mu m. To this end, we use 350 fs long, 2 mu J pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 mu m in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 mu m. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6 x 10(-4), and by direct light coupling and far-field imaging, yielding a value of 3.5 x 10(-4). The formation mechanism of the modification is discussed. (C) 2017 Optical Society of America
Subject Keywords
Crystalline silicon
URI
https://hdl.handle.net/11511/56741
Journal
OPTICS LETTERS
DOI
https://doi.org/10.1364/ol.42.003028
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Electrically controlled terahertz spatial light modulators with graphene arrays
Kakenov, Nurbek; Takan, Taylan; Özkan, Vedat Ali; Balci, Osman; Polat, Emre O.; Altan, Hakan; KOCABAŞ, COŞKUN (2016-05-27)
Gate-tunable high-mobility electrons on atomically thin graphene layers provide a unique opportunity to control electromagnetic waves in a very broad spectrum. In this paper, we describe an electrically-controlled multipixel terahertz light modulators. The spatial light modulator is fabricated using two large-area graphene layers grown by chemical vapor deposition and transferred on THz transparent and flexible substrates. Room temperature ionic liquid, inserted between the graphene, provides mutual gating ...
Dynamical electrical tuning of a silicon microsphere: used for spectral mapping of the optical resonances
Yüce, Emre; Thursby, Graham J.; Serpenguzel, Ali (2014-09-20)
In this work, electrical square pulses at various duty cycles are applied to a silicon microsphere resonator in order to continuously tune the refractive index of a silicon microsphere and to map the optical resonance in the time domain. A continuous-wave semiconductor diode laser operating in the L-band is used for the excitation of the silicon microsphere optical resonances. The 90 degrees transverse magnetically polarized elastic scattering signal is used to monitor the silicon microsphere resonances. We...
3d-microstructuring of silicon induced by nanosecond pulsed infrared fiber laser for potential solar cell applications
BÜLBÜL TATBUL, BESNA; Pavlov, Ihor; Department of Physics (2022-9-02)
Laser-induced three-dimensional (3D) structuring of silicon is a highly desired technology as silicon drives the semiconductor industry with its wide range of applications in solar cells, telecommunications, microelectronics, integrated photonics, etc. Structuring of silicon for such applications is typically performed by lithographic pattern production and pattern transfer via plasma etching, reactive ion etching, or chemical etching. However, conventional lithography methods are limited to the surface of ...
Improvement of light emission from Tb-doped Si-based MOS-LED using excess Si in the oxide layer
Kulakci, Mustafa; Turan, Raşit (2013-05-01)
The fabrication of efficient silicon-based Light Emitting Devices (LEDs) is extremely important for the integration of photonic and electronic components on the same Si platform. In this paper, we report on the room temperature electroluminescence properties of Tb-doped MOS-LED devices with an active layer of SiO2 and Si-rich SiOx produced using the magnetron co-sputtering technique. The electroluminescence properties of both types of devices were studied as a function of processing conditions and material ...
Highly efficient and broadband light transmission in 90 degrees nanophotonic wire waveguide bends
KURT, HAMZA; Giden, I. H.; Ustun, K. (The Optical Society, 2011-03-01)
Nanophotonic wire silicon waveguides are indispensable components of integrated photonic circuits. Because of the inherent nature of these waveguides, such as narrow width and high-index contrast, corners with large bending radii are inevitable for efficient light transmission with small loss values, which, in turn, impedes the miniaturization of photonic components. To alleviate huge bending losses of a right angle waveguide, we designed a structure incorporating a two-dimensional (2D) photonic crystal, al...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Pavlov et al., “Femtosecond laser written waveguides deep inside silicon,”
OPTICS LETTERS
, pp. 3028–3031, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56741.