Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Compatibilization and characterization of blends of styrene-maleic anhydride copolymer with modified polyethylenes
Date
2001-05-02
Author
Bayram, G
Yılmazer, Ülkü
Xanthos, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
Potentially reactive blends of styrene-maleic anhydride (SMAH) with ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) and nonreactive blends of SMAH with ethylene/methyl acrylate (E-MA) were produced in a Brabender batch mixer and in a corotating twin-screw extruder. The products were characterized in terms of rheology, morphology, and mechanical properties to understand the reaction characteristics between anhydride/epoxy functional groups. Storage modulus, G', loss modulus, G" and complex viscosity, eta* of the reactive blends were higher than those of nonreactive ones. At 25% E-MA-GMA content, maximum in eta* was obtained for the reactive blends. The reactive blends showed finer morphology than the nonreactive ones at all concentrations studied. Mechanical characterization showed that reactive SMAH/E-MA-GMA blends had higher tensile strength, % strain at break, and tensile modulus than the nonreactive blends for all corresponding modified polyethylene contents. (C) 2001 John Wiley & Sons, Inc.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/56756
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/1097-4628(20010502)80:5<790::aid-app1156>3.0.co;2-2
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Kinetics of polyurethane formation between glycidyl azide polymer and a triisocyanate
Keskin, S; Özkar, Saim (Wiley, 2001-07-25)
Kinetics of the polyurethane formation between glycidyl azide polymer (GAP) and a polyisocyanate, Desmodur N-100, were studied in the bulk state by using quantitative FTIR spectroscopy. The reaction was followed by monitoring the change in intensity of the absorption band at 2270 cm-l for NCO stretching in the IR spectrum, and was shown to obey second-order kinetics up to 50% conversion. The activation parameters were obtained from the evaluation of kinetic data at different temperatures in the range of 50-...
Conducting polymer composites: Polypyrrole and poly(vinyl chloride vinyl acetate) copolymer
Balci, N; Bayramli, E; Toppare, Levent Kamil (Wiley, 1997-04-25)
Composites of a polypyrrole (PPy) and poly(vinyl chloride-vinyl acetate) copolymer (PVC-PVA) were prepared both chemically and electrochemically. An insulating polymer was retained in the blend and the thermal stability of the polymer was enhanced by polymerizing pyrrole into the host matrix in both cases. The composites prepared electrochemically gave the best results in terms of conductivity and air stability. (C) 1997 John Wiley & Sons, Inc.
Synthesis and characterization of multi-hollow opaque polymer pigments
Asmaoglu, Serdar; Gündüz, Güngör; MAVİŞ, BORA; Colak, Uner (Wiley, 2016-08-05)
A new generation multihollow opaque polymer pigment was synthesized by suspension polymerization of water-in-oil-in-water emulsion method, where methyl methacrylate and ethylene glycol dimethacrylate monomer mixture was used as oil phase. The effects of surfactant and cosurfactant composition in terms of hydrophilic/lipophilic balance on the stability of the water-in-oil emulsion and the size of water droplets were studied. Low droplet sizes and the optimum stability were obtained with Span 80&Tween 80 surf...
Reactive processing and properties of styrene-maleic anhydride and poly(tetramethylene ether glycol)
Bayram, G; Yılmazer, Ülkü (Wiley, 2002-03-07)
The anhydride/hydroxyl-functionalized blends of styrene-maleic anhydride (SMAH) with poly(tetramethylene ether glycol) (PTMEG) in the presence or absence of a hydrated zinc acetate catalyst were produced in a batch mixer and in a corotating twin-screw extruder. In batch mixing, torque values increased with time as a result of chain-extension/branching reactions. The reaction products were studied by thermal, mechanical, morphological, and spectroscopic characterization techniques. The glass transition tempe...
Compatibilization of poly(2,6-dimethyl-1,4-phenylene oxide) and poly(2,6-dichloro-1,4-phenylene oxide) with sulfonated polystyrene and its Na and Zn-neutralized ionomers
Mih, M; Aras, L; Alkan, C (Springer Science and Business Media LLC, 2003-05-01)
Compatibility of acidic (H), Na, and Zn neutralized sulfonated polystyrene ionomer blends with Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and Poly(2,6-dichloro-1,4-phenylene oxide) (PDCIPO) was investigated by Dilute Solution Viscometry (DSV) and Differential Scanning Calorimetry (DSC). The intrinsic viscosities of the blends, are measured in suitable solvents. The degree of compatibility of the blends is characterized by Ab parameter. According to the results, PPO is completely miscible, except for Na-ne...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bayram, Ü. Yılmazer, and M. Xanthos, “Compatibilization and characterization of blends of styrene-maleic anhydride copolymer with modified polyethylenes,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 790–797, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56756.