Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Li+ and Li interactions with carbon nanocage structures
Date
2008-02-01
Author
Pekoez, Rengin
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
278
views
0
downloads
Cite This
Molecular dynamics simulations have been carried out to explore the structural properties of Li and Li+ confined inside single-walled carbon nanotubes (SWCNTs) and fullerene molecules. C-Li, C-Li+, Li-Li and Li+-Li+ interactions have been represented by pair functions and parameterized for the corresponding interactions. C-C interactions have been modeled by Tersoff potential. Open-ended SWCNTs with various sizes and chirality, as well as fullerenes with various sizes have been considered in the simulations. C-Li interaction is stronger than that of C-Li+. Enclohedral Li+ doping caused structural deformations in C-60. It has been found that for both Li and Li+ cases endohedral doping is favorable with respect to exohedral doping. This result is valid for both fullerenes and nanotubes.
Subject Keywords
General Materials Science
,
Bioengineering
,
General Chemistry
,
Condensed Matter Physics
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/56783
Journal
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
DOI
https://doi.org/10.1166/jnn.2008.d021
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Impurity-driven nanocrystallization of Zr-based bulk amorphous alloys
Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (American Scientific Publishers, 2008-02-01)
The effect of oxygen content and Ti addition on the glass forming ability (GFA) and crystallization kinetic of Zr-based bulk glass forming alloys have been studied by means of thermal analysis and X-ray diffraction techniques. Presence of oxygen triggers the formation of a nanocrystalline metastable f.c.c. Zr-2 Ni-type phase which can act as heterogenous nucleation sites for the formation of dendrites during solidification. An increase in oxygen content changes the crystallization behaviour from a single- t...
The electronic structure of capped and uncapped CdS nanoparticles
Ercan, Ilke; Katırcıoğlu, Şenay (American Scientific Publishers, 2008-02-01)
The electronic structure of spherical CdmSn nanoparticles having zinc-blende symmetry and the diameters of up to around 3 nm has been studied by Hartree-Fock theory to find out the effect of the cluster size on the optical energy gap between HOMO and LUMO. The effect of encapsulation on the electronic structure has been also investigated for CdS4 and Cd13S4 clusters embedded in SiO2 matrix and sodalite cage by Hartree-Fock theory. It was found that the energy gap of CdS nanoparticles can be regulated by bot...
Hydrothermal synthesis of nanostructured TiO2 particles and characterization of their photocatalytic antimicrobial activity
ERDURAL, Beril K.; YÜRÜM, Alp; BAKIR, Ufuk; Karakaş, Gürkan (American Scientific Publishers, 2008-02-01)
Nanostructured titania particles were synthesized by using hydrothermal processing and the photocatalytic antimicrobial activities were characterized. Both sol-gel synthesized and commercial TiO2 (anatase) samples were processed with two step hydrothermal treatments, under alkaline and neutral conditions. Scanning Electron Microscope (SEM) images showed that alkaline treatment yields nanofibers and lamellar structured particles from the commercial anatase and sol-gel synthesized samples respectively. Furthe...
Structural Properties of ZnO Nanoparticels and Nanorings: Molecular Dynamics Simulations
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-06-01)
Structural properties of zinc oxide (ZnO) nanoparticles and nanorings have been investigated by performing both equilibrium and nonequilibrium classical molecular dynamics simulations at various temperatures. An atomistic potential energy function has been used to represent the interactions among the atoms. It has been found that ZnO nanostructures undergo a structural change depending on temperature and different models. ZnO nanorings change into rod like structures with the effect of temperature. On the o...
Molecular Dynamics Simulations of ZnO Nanostructures Under Strain: II-Nanorods
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanorods have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, 1 K and 300 K. It has been found that ZnO nanostructures following strain application undergo a structural change depending on temperature and geometry.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Pekoez and Ş. Erkoç, “Li+ and Li interactions with carbon nanocage structures,”
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
, pp. 675–678, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56783.