Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Trie-structured Bayesian Model for Unsupervised Morphological Segmentation
Download
index.pdf
Date
2017-04-23
Author
Kurfalı, Murathan
Ustun, Ahmet
CAN BUĞLALILAR, BURCU
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
237
views
0
downloads
Cite This
In this paper, we introduce a trie-structured Bayesian model for unsupervised morphological segmentation. We adopt prior information from different sources in the model. We use neural word embeddings to discover words that are morphologically derived from each other and thereby that are semantically similar. We use letter successor variety counts obtained from tries that are built by neural word embeddings. Our results show that using different information sources such as neural word embeddings and letter successor variety as prior information improves morphological segmentation in a Bayesian model. Our model outperforms other unsupervised morphological segmentation models on Turkish and gives promising results on English and German for scarce resources.
Subject Keywords
Bayesian learning
,
Morphological segmentation
,
Morphology
,
Unsupervised learning
URI
https://hdl.handle.net/11511/56841
DOI
https://doi.org/10.1007/978-3-319-77113-7_7
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
A Graph-Based Approach for Video Scene Detection
Sakarya, Ufuk; Telatar, Zjya (2008-04-22)
In this paper, a graph-based method for video scene detection is proposed. The method is based on a weighted undirected graph. Each shot is a vertex on the graph. Edge weights among the vertices are evaluated by using spatial and temporal similarities of shots. By using the complete information of the graph, a set of the vertices mostly similar to each other and dissimilar to the others is detected. Temporal continuity constraint is achieved on this set. This set is the first detected video scene. The verti...
Building Morphological Chains for Agglutinative Languages
Ozen, Serkan; CAN BUĞLALILAR, BURCU (2017-04-23)
In this paper, we build morphological chains for agglutinative languages by using a log linear model for the morphological segmentation task. The model is based on the unsupervised morphological segmentation system called MorphoChains [1]. We extend MorphoChains log linear model by expanding the candidate space recursively to cover more split points for agglutinative languages such as Turkish, whereas in the original model candidates are generated by considering only binary segmentation of each word. The re...
Unsupervised Morphological Segmentation Using Neural Word Embeddings
Ustun, Ahmet; CAN BUĞLALILAR, BURCU (2016-10-12)
We present a fully unsupervised method for morphological segmentation. Unlike many morphological segmentation systems, our method is based on semantic features rather than orthographic features. In order to capture word meanings, word embeddings are obtained from a two-level neural network [11]. We compute the semantic similarity between words using the neural word embeddings, which forms our baseline segmentation model. We model morphotactics with a bigram language model based on maximum likelihood estimat...
A complete axiomatization for fuzzy functional and multivalued dependencies in fuzzy database relations
Sozat, MI; Yazıcı, Adnan (Elsevier BV, 2001-01-15)
This paper first introduces the formal definitions of fuzzy functional and multivalued dependencies which are given on the basis of the conformance values presented here. Second, the inference rules are listed after both fuzzy functional and multivalued dependencies are shown to be consistent, that is, they reduce to those of the classic functional and multivalued dependencies when crisp attributes are involved. Finally, the inference rules presented here are shown to be sound and complete for the family of...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kurfalı, A. Ustun, and B. CAN BUĞLALILAR, “A Trie-structured Bayesian Model for Unsupervised Morphological Segmentation,” 2017, vol. 10761, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56841.