Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Building Morphological Chains for Agglutinative Languages
Download
index.pdf
Date
2017-04-23
Author
Ozen, Serkan
CAN BUĞLALILAR, BURCU
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
216
views
0
downloads
Cite This
In this paper, we build morphological chains for agglutinative languages by using a log linear model for the morphological segmentation task. The model is based on the unsupervised morphological segmentation system called MorphoChains [1]. We extend MorphoChains log linear model by expanding the candidate space recursively to cover more split points for agglutinative languages such as Turkish, whereas in the original model candidates are generated by considering only binary segmentation of each word. The results show that we improve the state-of-art Turkish scores by 12% having a F-measure of 72% and we improve the English scores by 3% having a F-measure of 74%. Eventually, the system outperforms both MorphoChains and other well-known unsupervised morphological segmentation systems. The results indicate that candidate generation plays an important role in such an unsupervised loglinear model that is learned using contrastive estimation with negative samples.
Subject Keywords
Unsupervised learning
,
Morphological segmentation
,
Log-linear models
,
Morphology
,
Contrastive estimation
URI
https://hdl.handle.net/11511/65845
DOI
https://doi.org/10.1007/978-3-319-77113-7_8
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Trie-structured Bayesian Model for Unsupervised Morphological Segmentation
Kurfalı, Murathan; Ustun, Ahmet; CAN BUĞLALILAR, BURCU (2017-04-23)
In this paper, we introduce a trie-structured Bayesian model for unsupervised morphological segmentation. We adopt prior information from different sources in the model. We use neural word embeddings to discover words that are morphologically derived from each other and thereby that are semantically similar. We use letter successor variety counts obtained from tries that are built by neural word embeddings. Our results show that using different information sources such as neural word embeddings and letter s...
A complete axiomatization for fuzzy functional and multivalued dependencies in fuzzy database relations
Sozat, MI; Yazıcı, Adnan (Elsevier BV, 2001-01-15)
This paper first introduces the formal definitions of fuzzy functional and multivalued dependencies which are given on the basis of the conformance values presented here. Second, the inference rules are listed after both fuzzy functional and multivalued dependencies are shown to be consistent, that is, they reduce to those of the classic functional and multivalued dependencies when crisp attributes are involved. Finally, the inference rules presented here are shown to be sound and complete for the family of...
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
Improving reinforcement learning by using sequence trees
Girgin, Sertan; Polat, Faruk; Alhajj, Reda (Springer Science and Business Media LLC, 2010-12-01)
This paper proposes a novel approach to discover options in the form of stochastic conditionally terminating sequences; it shows how such sequences can be integrated into the reinforcement learning framework to improve the learning performance. The method utilizes stored histories of possible optimal policies and constructs a specialized tree structure during the learning process. The constructed tree facilitates the process of identifying frequently used action sequences together with states that are visit...
Analysis and network representation of hotspots in protein interfaces using minimum cut trees
Tunçbağ, Nurcan; Keskin, Ozlem; GÜRSOY, Attila (2010-08-01)
We propose a novel approach to analyze and visualize residue contact networks of protein interfaces by graph-based algorithms using a minimum cut tree (mincut tree). Edges in the network are weighted according to an energy function derived from knowledge-based potentials. The mincut tree, which is constructed from the weighted residue network, simplifies and summarizes the complex structure of the contact network by an efficient and informative representation. This representation offers a comprehensible vie...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ozen and B. CAN BUĞLALILAR, “Building Morphological Chains for Agglutinative Languages,” 2017, vol. 10761, p. 99, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65845.