Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A state prediction scheme for discrete time nonlinear dynamic systems
Date
2007-01-01
Author
Demirbaş, Kerim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
A state prediction scheme is proposed for discrete time nonlinear dynamic systems with non-Gaussian disturbance and observation noises. This scheme is based upon quantization, multiple hypothesis testing, and dynamic programming. Dynamic models of the proposed scheme are as general as dynamic models of particle predictors, whereas the nonlinear models of the extended Kalman (EK) predictor are linear with respect to the disturbance and observation noises. The performance of the proposed scheme is compared with both the EK predictor and sampling importance resampling ( SIR) particle predictor. Monte Carlo simulations have shown that the performances of the proposed scheme, EK predictor, and SIR particle predictor are all model-dependent, that is, one performs better than the others for a given example. Some examples, for which the proposed scheme performs better than the others do, are also given in the paper.
Subject Keywords
Control and Systems Engineering
,
Theoretical Computer Science
,
Modelling and Simulation
,
Information Systems
,
Computer Science Applications
URI
https://hdl.handle.net/11511/57010
Journal
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
DOI
https://doi.org/10.1080/03081070600986912
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
A finite field framework for modeling, analysis and control of finite state automata
Reger, Johann; Schmidt, Klaus Verner (Informa UK Limited, 2004-09-01)
In this paper, we address the modeling, analysis and control of finite state automata, which represent a standard class of discrete event systems. As opposed to graph theoretical methods, we consider an algebraic framework that resides on the finite field F-2 which is defined on a set of two elements with the operations addition and multiplication, both carried out modulo 2. The key characteristic of the model is its functional completeness in the sense that it is capable of describing most of the finite st...
A new real-time suboptimum filtering and prediction scheme for general nonlinear discrete dynamic systems with Gaussian or non-Gaussian noise
Demirbaş, Kerim (Informa UK Limited, 2011-01-01)
A new suboptimum state filtering and prediction scheme is proposed for nonlinear discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises. This scheme is an online estimation scheme for real-time applications. Furthermore, this scheme is very suitable for state estimation under either constraints imposed on estimates or missing observations. State and observation models can be any nonlinear functions of the states, disturbance and observation noises as long as noise samples ...
An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation
Selcuk, A. M.; Öktem, Hüseyin Avni (Elsevier BV, 2009-08-01)
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transitio...
A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
Assessment of Transient Stability of Nonlinear Dynamic Systems by the Method of Tangent Hyperplanes and the Method of Tangent Hypersurfaces
Eskicioglu, Ahmet M. (ASME International, 1989-9-1)
Two direct methods, the method of tangent hyperplanes and the method of tangent hypersurfaces, are applied to an elementary nonlinear dynamic system for transient stability assessment. The former method is based on the approximation of the asymptotic stability boundary by hyperplanes at a certain class of unstable singular points in the state-space, and the latter replaces hyperplanes by hypersurfaces. The applicability and accuracy of both methods are evaluated through a comparison of results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Demirbaş, “A state prediction scheme for discrete time nonlinear dynamic systems,”
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
, pp. 501–511, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57010.