An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation

Selcuk, A. M.
Öktem, Hüseyin Avni
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transition time and finally using the conventional gene regulatory network inference methods to infer the regulatory relations. This approach does not require a priori information or assumption on the guard conditions and provides robustness to environmental or measurement noise underlined by the used jump detection filter. We discuss the particular problems where the suggested method can improve the efficiency and demonstrate the results on a comparative basis.


A finite field framework for modeling, analysis and control of finite state automata
Reger, Johann; Schmidt, Klaus Verner (Informa UK Limited, 2004-09-01)
In this paper, we address the modeling, analysis and control of finite state automata, which represent a standard class of discrete event systems. As opposed to graph theoretical methods, we consider an algebraic framework that resides on the finite field F-2 which is defined on a set of two elements with the operations addition and multiplication, both carried out modulo 2. The key characteristic of the model is its functional completeness in the sense that it is capable of describing most of the finite st...
Analysis of single Gaussian approximation of Gaussian mixtures in Bayesian filtering applied to mixed multiple-model estimation
Orguner, Umut (Informa UK Limited, 2007-01-01)
This paper examines the effect of the moment-matched single Gaussian approximation, which is made in various multiple-model filtering applications to approximate a Gaussian mixture, on the Bayesian filter performance. The estimation error caused by the approximation is analysed for both the prediction and the measurement updates of a Bayesian filter. An approximate formula is found for the covariance of the error caused by the approximation for a general Gaussian mixture with arbitrary components. The calcu...
A state prediction scheme for discrete time nonlinear dynamic systems
Demirbaş, Kerim (Informa UK Limited, 2007-01-01)
A state prediction scheme is proposed for discrete time nonlinear dynamic systems with non-Gaussian disturbance and observation noises. This scheme is based upon quantization, multiple hypothesis testing, and dynamic programming. Dynamic models of the proposed scheme are as general as dynamic models of particle predictors, whereas the nonlinear models of the extended Kalman (EK) predictor are linear with respect to the disturbance and observation noises. The performance of the proposed scheme is compared wi...
A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
An improved transformation for universal serendipity elements
Utku, M (1999-10-01)
This paper describes the formulation of shape functions and their derivatives for universal serendipity elements in finite element analysis, which allows for flexibility in locating edge nodes. Universal serendipity elements are defined as isoparametric elements having linear, quadratic and cubic node configurations at their edges in an arbitrary manner. Edge nodes positioned at the same relative distance from corner nodes in both master element and physical element provide improved accuracy over nodes posi...
Citation Formats
A. M. Selcuk and H. A. Öktem, “An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation,” NONLINEAR ANALYSIS-HYBRID SYSTEMS, pp. 277–287, 2009, Accessed: 00, 2020. [Online]. Available: