Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The lambda-phase transitions in NH4Cl
Date
1995-01-01
Author
Yurtseven, Hasan Hamit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
We show here the correlations between the volume changes and the vibrational frequencies of the disorder-induced Raman modes of NH4Cl near the lambda-phase transitions of first order (P=0), tricritical (P similar or equal to 1.6 kbar) and second order (P similar or equal to 2.8 kbar). We obtain the values of the mode Gruneisen parameter for each phonon across the lambda-phase transitions and use them to predict the Raman frequencies for the phonon modes studied as functions of temperature in the lambda-phase change regions.
Subject Keywords
Instrumentation
,
General Materials Science
URI
https://hdl.handle.net/11511/57271
Journal
PHASE TRANSITIONS
DOI
https://doi.org/10.1080/01411599508200400
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
The lambda-phase transition in NH4Br
Yurtseven, Hasan Hamit; Sherman, WF (Informa UK Limited, 1996-01-01)
This study gives the predicted frequencies for the Raman modes of v(7)TA(56 cm(-1)), v(5)LO(177 cm(-1)) and v(2)(1684 cm(-1)) of NH4Br at various temperatures for zero pressure across the lambda-phase transition in this crystal system. We calculate the Raman frequencies by means of a constant mode Gruneisen parameter for each mode across the lambda-phase change region of NH4Br.
Ultrasonic frequencies correlated with the volume changes of the q[1(1)over-bar-0] mode for the first-order phase transition in NH4Cl
Yurtseven, Hasan Hamit (Informa UK Limited, 2000-01-01)
We correlate here by means of gamma-Gruneisen relations the volume changes with the ultrasonic frequencies of the q[1 (1) over bar 0] mode of NH4Cl for the first-order phase transition in this crystal. The ultrasonic frequencies were calculated by a method, which we have developed, using the length-change data from the literature at pressures of 0, 0.2, 0.3 and 0.6 kbar in the first-order phase region of NH4Cl.
The mean field model with P-2 theta(2) coupling for the smectic A-smectic C* phase transition in liquid crystals
Salihoglu, S; Yurtseven, Hasan Hamit; Giz, A; Kayisoglu, D; Konu, A (Informa UK Limited, 1998-01-01)
Using mean field theory with a P(2)theta (2) coupling term in the free energy expansion, we calculate the polarization as a function of temperature for the smectic A-smectic C* phase transition in a liquid crystalline material. Our calculated polarization values are in good agreement with the experimental data.
T-X-Br phase diagram for the NH4BrxCl1-x system
Tari, O; Yurtseven, Hasan Hamit; Salihoglu, S (Informa UK Limited, 2000-01-01)
In this study using a mean field model we calculate the phase line equations for the beta-delta, beta-gamma and gamma-delta phase transitions in the NH4BrxCl1-x system. We then fit our phase line equations to the experimentally observed T-X-Br phase diagram for this system. Our calculated phase diagram agrees well with the observed one for the NH4BrxCl1-x system.
A phase diagram near the NAC* point in liquid crystals
Salihoglu, S; Tublek, A; Yurtseven, Hasan Hamit (Informa UK Limited, 2000-01-01)
Wt study here a mean field model to obtain the phase diagram (concentration versus temperature) near the NAC* point in a binary mixture of liquid crystal. Wr have Fitted our phase line equations to the experimental data for the mixture of SCE9 + SCE10 liquid crystals. We deduce fi om our analysis that there should exist a tricritical point close to the NAC* point on the AC* phase line.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Yurtseven, “The lambda-phase transitions in NH4Cl,”
PHASE TRANSITIONS
, pp. 1–13, 1995, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57271.