Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interactive evolutionary multi-objective optimization for quasi-concave preference functions
Date
2010-10-16
Author
Fowler, John W.
Gel, Esma S.
Köksalan, Mustafa Murat
Korhonen, Pekka
Marquis, Jon L.
Wallenius, Jyrki
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow its to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem. (C) 2010 Elsevier By. All rights reserved.
Subject Keywords
Interactive optimization
,
Multi-objective optimization
,
Evolutionary optimization
,
Knapsack problem
URI
https://hdl.handle.net/11511/57452
Journal
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
DOI
https://doi.org/10.1016/j.ejor.2010.02.027
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization
Hasançebi, Oğuzhan (2015-07-01)
In the present study a new metaheuristic algorithm called adaptive dimensional search (ADS) is proposed for discrete truss sizing optimization problems. The robustness of the ADS lies in the idea of updating search dimensionality ratio (SDR) parameter online during the search for a rapid and reliable convergence towards the optimum. In addition, several alternative stagnation-control strategies are integrated with the algorithm to escape from local optima, in which a limited uphill (non-improving) move is p...
Improving Computational Efficiency of Bat-Inspired Algorithm in Optimal Structural Design
Hasançebi, Oğuzhan (2015-07-01)
Bat-inspired (BI) algorithm is a recent metaheuristic optimization technique that simulates echolocation behavior of bats in seeking a design space. Along the same line with almost all metaheuristics, this algorithm also entails a large number of time-consuming structural analyses in structural design optimization applications. This study is focused on improving computational efficiency of the BI algorithm in optimum structural design. The number of structural analyses required by BI algorithm in the course...
An Evolutionary Algorithm for the Multi-objective Multiple Knapsack Problem
SOYLU, Banu; Köksalan, Mustafa Murat (2009-06-26)
In this study, we consider the multi-objective multiple knapsack problem (MMKP) and we adapt our favorable weight based evolutionary algorithm (FWEA) to approximate the efficient frontier of MMKP. The algorithm assigns fitness to solutions based on their relative strengths as well as their non-dominated frontiers. The relative strength is measured based on a weighted Tchebycheff distance from the ideal point where each Solution chooses its own weights that minimize its distance from the ideal point. We carr...
A new framework of multi-objective evolutionary algorithms for feature selection and multi-label classification of video data
Karagoz, Gizem Nur; Yazıcı, Adnan; Dokeroglu, Tansel; Coşar, Ahmet (2020-06-01)
There are few studies in the literature to address the multi-objective multi-label feature selection for the classification of video data using evolutionary algorithms. Selecting the most appropriate subset of features is a significant problem while maintaining/improving the accuracy of the prediction results. This study proposes a framework of parallel multi-objective Non-dominated Sorting Genetic Algorithms (NSGA-II) for exploring a Pareto set of non-dominated solutions. The subsets of non-dominated featu...
Application of genetic algorithms to geometry optimization of microclusters: A comparative study of empirical potential energy functions for silicon
Erkoc, S; Leblebicioğlu, Mehmet Kemal; Halıcı, Uğur (Informa UK Limited, 2003-01-01)
Evolutionary computation techniques (in particular, genetic algorithms) have been applied to optimize the structure of microclusters. Various empirical potential energy functions have been used to describe the interactions among the atoms in the clusters. A comparative study of silicon microclusters has been performed.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. W. Fowler, E. S. Gel, M. M. Köksalan, P. Korhonen, J. L. Marquis, and J. Wallenius, “Interactive evolutionary multi-objective optimization for quasi-concave preference functions,”
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
, pp. 417–425, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57452.