Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Calculation of the Raman frequency and linewidth of vibrons using anharmonic self energy model for the ε, δloc and δ phases in solid nitrogen
Date
2020-10-01
Author
Akay, Ö.
Yurtseven, Hasan Hamit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Temperature dependences of the Raman frequency shifts and linewidths of vibrons ν1, ν2 and ν22 are calculated from the anharmonic self energy in the ε, δloc (localized δ) and δ phases of solid nitrogen (P = 18.5 GPa). This is performed by fitting the expressions from the the anharmonic self energy to the experimental frequency and FWHM data for those vibrons from the literature. Our results show that the anharmonic self energy model can explain adequately the observed behavior of the Raman frequency and linewidth of the vibrons for the transitions of the ε-δloc – δ in solid nitrogen. This method of analysis can also be applied to other some molecular solids close to the phase transitions.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
URI
https://hdl.handle.net/11511/57460
Journal
Optik
DOI
https://doi.org/10.1016/j.ijleo.2020.165202
Collections
Department of Physics, Article