Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of dead reckoning procedures by using hybrid automata
Date
1999-01-01
Author
Ozutam, B.K.
Oğuztüzün, Mehmet Halit S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
© 1999 IEEE.Dead reckoning procedures for distributed interactive simulation are modelled as hybrid automata, and the interaction of their critical performance parameters, such as error threshold, heartbeat rate, network delay and network load, are analyzed by means of a symbolic model checking tool for hybrid automata.
Subject Keywords
Dead reckoning
,
Automata
,
Acceleration
,
Heart beat
,
Navigation
,
Virtual environment
,
Differential equations
,
Position measurement
,
Automatic control
,
Mathematical model
URI
https://hdl.handle.net/11511/57495
DOI
https://doi.org/10.1109/disrta.1999.807722
Conference Name
3rd IEEE International Workshop on Distributed Interactive Simulation and Real-Time Applications
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
Deniz, Fatih; Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (2016-07-01)
This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures...
Modeling and simulation of a maneuvering ship
Pakkan, Sinan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis documents the studies conducted in deriving a mathematical model representing the dynamics of a maneuvering ship to be implemented as part of an interactive real-time simulation system, as well as the details and results of the implementation process itself. Different effects on the dynamics of ship motions are discussed separately, meaning that the effects are considered to be applied to the system one at a time and they are included in the model simply by the principle of superposition. The mo...
Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces
Selçuk, Nevin (1997-01-01)
The discrete ordinates method (DOM) and discrete transfer method (DTM) were evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their predictions with exact solutions available from a box-shaped enclosure problem with steep temperature gradients. Comparative testing shows that the S-4 approximation produces better accuracy in radiative energy source term than in flux density in three orders of magnitude less CPU time than that required by the DTM. The S-4 approxi...
Investigation of deformation and shape memory characteristics of thermoplastic polymers
Yiğitbaşı, Cihan; Dal, Hüsnü; Department of Mechanical Engineering (2018)
Algorithmic implementation of constitutive models for shape memory polymers into commercial software packages through user material interfaces is the subject of this thesis. The effect of temperature change on the behaviors of these materials has been examined. The formulation of the generated material model has been constructed in the logarithmic strain space. Material model structure consists of three main steps. (i) In the geometric pre-processing step, using current and plastic metric, total and plastic...
Simulated FMRI toolbox
Türkay, Kemal Doğuş; Gökçay, Didem; Department of Medical Informatics (2009)
In this thesis a simulated fMRI toolbox is developed in order to generate simulated data to compare and benchmark different functional magnetic resonance image analysis methods. This toolbox is capable of loading a high resolution anatomic brain volume, generating 4D fMRI data in the same data space with the anatomic image, and allowing the user to create block and event-related design paradigms. Common fMRI artifacts such as scanner drift, cardiac pulsation, habituation and task related or spontaneous head...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. K. Ozutam and M. H. S. Oğuztüzün, “Analysis of dead reckoning procedures by using hybrid automata,” presented at the 3rd IEEE International Workshop on Distributed Interactive Simulation and Real-Time Applications, Greenbelt, MD, USA, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57495.