Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling and simulation of a maneuvering ship
Download
index.pdf
Date
2007
Author
Pakkan, Sinan
Metadata
Show full item record
Item Usage Stats
423
views
1537
downloads
Cite This
This thesis documents the studies conducted in deriving a mathematical model representing the dynamics of a maneuvering ship to be implemented as part of an interactive real-time simulation system, as well as the details and results of the implementation process itself. Different effects on the dynamics of ship motions are discussed separately, meaning that the effects are considered to be applied to the system one at a time and they are included in the model simply by the principle of superposition. The model is intended to include the hydrodynamic interactions between the ship hull and the ocean via added mass (added inertia), damping and restoring force concepts. In addition to these effects, which are derived considering no incident waves are present on the ocean, the environmental disturbances, such as wind, wave and ocean current are also taken into account for proposing a mathematical model governing the dynamics of the ship. Since the ultimate product of this thesis work is a running computer code that can be integrated into an available simulation software, the algorithm development and code implementation processes are also covered. Improvements made on the implementation to achieve “better” real-time performance are evaluated comparatively in reference to original runs conducted before the application of improvement under consideration. A new method to the computation of the wave model that allows faster calculation in real-time is presented. A modular programming approach is followed in the overall algorithm development process in order to make the integration of new program components into the software, such as a new hull or propulsion model or a different integrator type possible, easily and quickly.
Subject Keywords
Turbines.
,
Control Engineering Systems, Automatic Machinery (General)
URI
http://etd.lib.metu.edu.tr/upload/12608933/index.pdf
https://hdl.handle.net/11511/17012
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Simulation of motion of an underwater vehicle
Geridönmez, Fatih; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2007)
In this thesis, a simulation package for the Six Degrees of Freedom (6DOF) motion of an underwater vehicle is developed. Mathematical modeling of an underwater vehicle is done and the parameters needed to write such a simulation package are obtained from an existing underwater vehicle available in the literature. Basic equations of motion are developed to simulate the motion of the underwater vehicle and the parameters needed for the hydrodynamic modeling of the vehicle is obtained from the available litera...
Modeling and motion simulation of an underwater simulation
Küçük, Koray; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis involves modeling, controller design, and test case simulations for an underwater vehicle. Firstly, a complete dynamic model of the vehicle is developed with six degrees of freedom. The model includes the nonlinearities associated with the hydrodynamic forces and moments. The thrusters of the vehicle are also modeled. Then, using appropriate linearizations of the model, position and rate controllers are designed for the forward, downward, and turning motions of the vehicle. Finally, the designed...
Modeling and real-time control system implementation for a Stewart Platform
Albayrak, Onur; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2005)
This work focuses on modeling and real-time control of a motion simulator for dynamic testing of a two-axis gyro-stabilized head mirror used in modern tanks. For this purpose, a six-degree-of freedom Stewart Platform which can simulate disturbances on the stabilized head mirror during operation of the tank is employed. Mathematical models of the Stewart Platform are constructed using MATLAB and ADAMS. Control system infrastructure is constructed and real-time control system elements are employed. Controller...
Modeling and simulation of a navigation system with an IMU and a Magnetometer
Kayasal, Uğur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. ...
3-D humanoid gait simulation using an optimal predictive control
Özyurt, Gökhan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2005)
In this thesis, the walking of a humanoid system is simulated applying an optimal predictive control algorithm. The simulation is built using Matlab and Simulink softwares. Four separate physical models are developed to represent the single support and the double support phases of a full gait cycle. The models are three dimensional and their properties are analogous to the human̕s. In this connection, the foot models in the double support phases include an additional joint which connects the toe to the foot...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Pakkan, “Modeling and simulation of a maneuvering ship,” M.S. - Master of Science, Middle East Technical University, 2007.