Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interval criteria for the forced oscillation of super-half-linear differential equations under impulse effects
Date
2009-07-01
Author
ÖZBEKLER, ABDULLAH
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
In this paper, we derive new interval oscillation criteria for a forced super-half-linear impulsive differential equation having fixed moments of impulse actions. The results are extended to a more general class of nonlinear impulsive differential equations. Examples are also given to illustrate the relevance of the results.
Subject Keywords
Modelling and Simulation
,
Computer Science Applications
URI
https://hdl.handle.net/11511/57496
Journal
MATHEMATICAL AND COMPUTER MODELLING
DOI
https://doi.org/10.1016/j.mcm.2008.10.020
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Annulus criteria for mixed nonlinear elliptic differential equations
ŞAHİNER, YETER; Zafer, Ağacık (Elsevier BV, 2011-05-01)
New oscillation criteria are obtained for forced second order elliptic partial differential equations with damping and mixed nonlinearities of the form
Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities
Agarwal, Ravi P.; Anderson, Douglas R.; Zafer, Ağacık (Elsevier BV, 2010-01-01)
Interval oscillation criteria are established for second-order forced delay dynamic equations on time scales containing mixed nonlinearities of the form
Periodic solutions of the hybrid system with small parameter
Akhmet, Marat; Ergenc, T. (Elsevier BV, 2008-06-01)
In this paper we investigate the existence and stability of the periodic solutions of a quasilinear differential equation with piecewise constant argument. The continuous and differentiable dependence of the solutions on the parameter and the initial value is considered. A new Gronwall-Bellman type lemma is proved. Appropriate examples are constructed.
Higher-Order Numerical Scheme for the Fractional Heat Equation with Dirichlet and Neumann Boundary Conditions
Priya, G. Sudha; Prakash, P.; Nieto, J. J.; Kayar, Z. (Informa UK Limited, 2013-06-01)
In this article, we consider a higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions. By using a fourth-order compact finite-difference scheme for the spatial variable, we transform the fractional heat equation into a system of ordinary fractional differential equations which can be expressed in integral form. Further, the integral equation is transformed into a difference equation by a modified trapezoidal rule. Numerical results are provided to verif...
Forced oscillation of super-half-linear impulsive differential equations
Oezbekler, A.; Zafer, Ağacık (Elsevier BV, 2007-09-01)
By using a Picone type formula in comparison with oscillatory unforced half-linear equations, we derive new oscillation criteria for second order forced super-half-linear impulsive differential equations having fixed moments of impulse actions. In the superlinear case, the effect of a damping term is also considered.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. ÖZBEKLER and A. Zafer, “Interval criteria for the forced oscillation of super-half-linear differential equations under impulse effects,”
MATHEMATICAL AND COMPUTER MODELLING
, pp. 59–65, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57496.