Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
WHEAT BIOFORTIFICATION - A POTENTIAL KEY TO HUMAN MALNUTRITION
Date
2017-01-01
Author
Khan, Mohd Kamran
Pandey, Anamika
Akkaya, Mahinur
GEZGİN, SAİT
HAMURCU, MEHMET
HAKKI, ERDOĞAN EŞREF
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
14
views
0
downloads
Cite This
Wheat production is required to double by 2050 in order to facilitate the global food assurance. Along with the rise in wheat production, improvement of the nutrient value of wheat varieties is another crucial challenge faced by wheat breeders. It is well established that more than 40% people in the world are at a risk of malnutrition caused by the deficiency of Fe, Zn and protein in their food. Numerous strategies are adopted by scientists, breeders and food industries to combat the problem. In this context, biofortificaton has become a successful method for increasing, either genetically or agronomically, the micronutrient content in crop plants. Recently, substantial progress has been made in the use of molecular marker systems and quantitative trait loci (QTL) to augment the wheat iron, zinc and protein content. Determining the role of GPC-B1 gene in controlling the iron, zinc and protein content in wheat genotypes is a promising discoveries. Although the gene is found to be associated with an elevated micronutrient content, it is also responsible for a decrease in yield. In order to simultaneously achieve both high nutrient content and elevated yield, major efforts are required to reveal the genetic control of these traits. Moreover, identifying the wheat genomic resources with an elevated nutrient content can be crucial. Employment of the next generation sequencing methods and use of molecular markers in marker assisted selection appears to be a promising approach to attaining the objective of breeding nutrient rich varieties. Combining advanced molecular biology and plant breeding techniques for wheat development is a potential strategy in achieving a healthy, 'hidden hunger' free world.
Subject Keywords
Biofortification
,
Grain protein content
,
Malnutrition
,
Wheat
URI
https://hdl.handle.net/11511/57524
Journal
JOURNAL OF ELEMENTOLOGY
DOI
https://doi.org/10.5601/jelem.2016.21.4.1336
Collections
Graduate School of Natural and Applied Sciences, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. K. Khan, A. Pandey, M. Akkaya, S. GEZGİN, M. HAMURCU, and E. E. HAKKI, “WHEAT BIOFORTIFICATION - A POTENTIAL KEY TO HUMAN MALNUTRITION,”
JOURNAL OF ELEMENTOLOGY
, vol. 22, no. 3, pp. 937–944, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57524.