The Arbitrary Lagrangian-Eulerian (ALE) Modeling of a Vapor Bubble Growth in a Microtube

2014-09-28
A numerical model based on the arbitrary Lagrangian-Eulerian method (ALE) is introduced to investigate the hydrodynamics and the heat transfer of an elongated vaporized bubble in a microchannelin detail. The Navier-Stokes equations along the energy equation are solved in ALE description as a single fluid. The finite element method is used to discretize the equations. In simulations, the nucleated bubble comes in contact with superheated water and starts growing.
International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)

Suggestions

3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian-Eulerian (ALE) method
Jafari, Rahim; Okutucu Özyurt, Hanife Tuba (2016-01-01)
The arbitrary Lagrangian-Eulerian method (ALE) is used to model the hydrodynamics and the heat transfer of an elongated vaporized bubble in a rnicrotube. The Navier-Stokes equations along with the energy equation are solved in ALE description as a single fluid with two subdomains and a moving mesh at the interface of the liquid and the vapor phases. The numerical framework is the commercial CFD code COMSOL multiphysics with the finite element method, which has been improved by external functions to the phas...
Computational Modeling of the Effects of Viscous Dissipation on Polymer Melt Flow Behavior During Injection Molding Process in Plane Channels
Tutar, M.; Karakuş, Ali (2013-02-01)
The present finite volume method based fluid flow solutions investigate the boundary-layer flow and heat transfer characteristics of polymer melt flow in a rectangular plane channel in the presence of the effect of viscous dissipation and heat transfer by considering the viscosity and density variations in the flow. For different inflow velocity boundary conditions and the injection polymer melt temperatures, the viscous dissipation effects on the velocity and temperature distributions are studied extensive...
Finite element modelling and simulation of drying isotropic and anisotropic food samples
Soydan Karabacak, Meltem; Çekmecelioğlu, Deniz; Esin, Ali; Department of Food Engineering (2013)
The aim of this study was to investigate drying characteristics (temperature gradient, rate of drying and temperature change, drying time, diffusivity values, shrinkage) of isotropic and anisotropic foods by observing the changes in temperatures at four different locations and moisture contents and to build an appropriate model for simulation of temperature and moisture distribution using finite element method. The lean meat samples (anisotropic) with three fiber configurations (v; flow normal to fiber, dry...
A crystal plasticity based finite element framework for RVE calculations of two-phase materials: Void nucleation in dual-phase steels
Yalçınkaya, Tuncay; Çakmak, Serhat Onur (Elsevier BV, 2021-05-01)
A crystal plasticity based finite element (CPFE) framework is developed for performing representative volume element (RVE) calculations on two-phase materials. The present paper investigates the mechanical response and the evolution of microstructure of dual-phase (DP) steels under uniaxial tensile loading, with a special focus on void nucleation. The spatial distribution and morphology of the ferrite and martensite grains in DP steels are explicitly accounted for by generating three-dimensional RVEs with V...
A subgrid stabilization finite element method for incompressible magnetohydrodynamics
Belenli, Mine A.; Kaya Merdan, Songül; Rebholz, Leo G.; Wilson, Nicholas E. (2013-07-01)
This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element spatial discretization with Scott-Vogelius mixed finite elements and semi-implicit backward Euler temporal discretization. We prove its unconditional stability and prove how the coarse mesh can be chosen so that optimal convergence ca...
Citation Formats
R. Jafari and H. T. Okutucu Özyurt, “The Arbitrary Lagrangian-Eulerian (ALE) Modeling of a Vapor Bubble Growth in a Microtube,” Rhodes, GREECE, 2014, vol. 1648, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57574.