Nonlinear oscillation of second-order dynamic equations on time scales

2009-10-01
Anderson, Douglas R.
Zafer, Ağacık
Interval oscillation criteria are established for a second-order nonlinear dynamic equation on time scales by utilizing a generalized Riccati technique and the Young inequality. The theory can be applied to second-order dynamic equations regardless of the choice of delta or nabla derivatives.
APPLIED MATHEMATICS LETTERS

Suggestions

Asymptotic behavior of solutions of differential equations with piecewise constant arguments
Akhmet, Marat (Elsevier BV, 2008-09-01)
The main goal of the work is to obtain sufficient conditions for the asymptotic equivalence of a linear system of ordinary differential equations and a quasilinear system of differential equations with piecewise constant argument.
Dynamic programming for a Markov-switching jump-diffusion
Azevedo, N.; Pinheiro, D.; Weber, Gerhard Wilhelm (Elsevier BV, 2014-09-01)
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump-diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman's optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton-Jacobi-Belman equation, which turns out to be a partial in...
On oscillation and nonoscillation of second-order dynamic equations
Zafer, Ağacık (Elsevier BV, 2009-01-01)
New oscillation and nonoscillation criteria are established for second-order linear equations with damping and forcing terms. Examples are given to illustrate the results.
Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients
ÖZBEKLER, ABDULLAH; Wong, J. S. W.; Zafer, Ağacık (Elsevier BV, 2011-07-01)
In this paper we give new oscillation criteria for forced super- and sub-linear differential equations by means of nonprincipal solutions.
Oscillation criteria for third-order nonlinear functional differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, A.; Zafer, Ağacık (Elsevier BV, 2010-07-01)
In this work, we are concerned with oscillation of third-order nonlinear functional differential equations of the form
Citation Formats
D. R. Anderson and A. Zafer, “Nonlinear oscillation of second-order dynamic equations on time scales,” APPLIED MATHEMATICS LETTERS, pp. 1591–1597, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57626.