Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Parallel implementation of a gas-kinetic BGK method on unstructured grids for 3-D inviscid missile flows
Date
2009-10-12
Author
Ilgaz, Murat
Tuncer, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
207
views
0
downloads
Cite This
A 3-D gas-kinetic BGK method and its parallel solution algorithm are developed for the computation of inviscid missile flows on unstructured grids. Flow solutions over a supersonic missile are presented to validate the accuracy and robustness of the method. It is shown that the computation time, which is an important deficiency of gas-kinetic BGK methods, may significantly be reduced by performing computations in parallel. © 2009 Springer-Verlag Berlin Heidelberg.
Subject Keywords
Parallel Implementation
,
Unstructured Grid
,
Aerodynamic Load
,
Cell Interface
,
Equilibrium Distribution Function
URI
https://hdl.handle.net/11511/57703
DOI
https://doi.org/10.1007/978-3-540-92744-0_56
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Parallel-MLFMA Solutions of Large-Scale Problems Involving Composite Objects
Ergül, Özgür Salih (2012-07-14)
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of large-scale electromagnetics problems involving composite objects with dielectric and metallic parts. Problems are formulated with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with MLFMA on distributed-memory architectures. Numerical examples involving canonical and complicated objects, such as optical metamaterials, are presented to...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Parallel processing of two-dimensional euler equations for compressible flows
Doǧru, K.; Aksel, M.h.; Tuncer, İsmail Hakkı (2008-12-01)
A parallel implementation of a previously developed finite volume algorithm for the solution of two-dimensional, unsteady, compressible Euler equations is given. The conservative form of the Euler equations is discretized with a second order accurate, one-step Lax-Wendroff scheme. Local time stepping is utilized in order to accelerate the convergence. For the parallel implementation of the method, the solution domain is partitioned into a number of subdomains to be distributed to separate processors for par...
Recursive Two-Way Parabolic Equation Approach for Modeling Terrain Effects in Tropospheric Propagation
Ozgun, Ozlem (2009-09-01)
The Fourier split-step method is a one-way marching-type algorithm to efficiently solve the parabolic equation for modeling electromagnetic propagation in troposphere. The main drawback of this method is that it characterizes only forward-propagating waves, and neglects backward-propagating waves, which become important especially in the presence of irregular surfaces. Although ground reflecting boundaries are inherently incorporated into the split-step algorithm, irregular surfaces (such as sharp edges) in...
Fast Algorithms for Digital Computation of Linear Canonical Transforms
Koc, Aykut; Öktem, Sevinç Figen; Ozaktas, Haldun M.; Kutay, M. Alper (2016-01-01)
Fast and accurate algorithms for digital computation of linear canonical transforms (LCTs) are discussed. Direct numerical integration takes O.N-2/time, where N is the number of samples. Designing fast and accurate algorithms that take O. N logN/time is of importance for practical utilization of LCTs. There are several approaches to designing fast algorithms. One approach is to decompose an arbitrary LCT into blocks, all of which have fast implementations, thus obtaining an overall fast algorithm. Another a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ilgaz and İ. H. Tuncer, “Parallel implementation of a gas-kinetic BGK method on unstructured grids for 3-D inviscid missile flows,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57703.