Optimization of aeroelastic flapping motion of thin airfoils in a biplane configuration for maximum thrust

2007-01-01
Kaya, Mustafa
Tuncer, İsmail Hakkı
Jones, Kevin D.
Platzer, Max F.
An aeroelastic flapping motion of thin airfoils in a biplane configuration is optimized for maximum thrust. Airfoils are attached to swing arms by an elastic joint, which is model led by a torsional spring. A spring-mass system is employed for the aeroelastic coupling. The stiffness coefficient and the mass moment of inertia of the airfoil are optimized for maximum thrust. A gradient based optimization method is employed in a parallel computing environment. Unsteady, low speed flows are computed in parallel using a Navier-Stokes solver on moving and deforming overset grids. It is shown that the optimum aeroelastic pitching motion produces significantly higher thrust than that of the sinusoidal pitching.
37th AIAA Fluid Dynamics Conference and Exhibit

Suggestions

Optimization of Flapping Motion Parameters for Two Airfoils in a Biplane Configuration
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (American Institute of Aeronautics and Astronautics (AIAA), 2009-03-01)
Flapping motion parameters of airfoils in a biplane configuration are optimized for maximum thrust and/or propulsive efficiency. Unsteady, viscous flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized for a range of flapping frequencies. A gradient-based optimization algorithm is implemented in a parallel computing...
Optimization of flapping motion of airfoils in biplane configuration for maximum thrust and/or efficiency
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (2007-01-01)
Flapping motion of airfoils in a biplane configuration are optimized for maximizing the thrust and propulsive efficiency. Unsteady flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel viscous flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized at a fixed flapping frequency and average distance between two airfoils. A gradient based optimization algorithm is impleme...
Computational fluid dynamics simulations of ship airwake with a hovering helicopter rotor
Orbay, Ezgi; Uzol, Oğuz; Sezer Uzol, Nilay; Department of Aerospace Engineering (2016)
In this thesis, Computational Fluid Dynamic simulations of ship airwake for a simple ship geometry are performed for the horizontal and inclined deck configurations and also with and without the helicopter rotor over the deck. An actuator disk model is used for the CFD simulations of a rotor model hovering over the flight deck. All of the computations are performed by using a commercial finite volume CFD flow solver. The unstructured tetrahedral grids are generated in the computational domain including ship...
Parallel optimization of flapping airfoils in a biplane configuration for maximum thrust
Tuncer, İsmail Hakkı (2004-05-27)
Flapping airfoils in a biplane configuration are optimized for a maximum thrust production. A parallel Navier-Stokes solver on overset grids and a gradient based parallel optimization method are employed. The periodic flapping motion of airfoils in a plane configuration is described in a combined pitch and plunge. The pitch and plunge amplitudes and the phase shift between them are optimized for a range of flapping frequencies. It is shown that at low flapping frequencies, flapping airfoils in a biplane con...
Path optimization of flapping airfoils based on unsteady viscous flow solutions
Kaya, Mustafa; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2008)
The flapping path of a single airfoil and dual airfoils in a biplane configuration is optimized for maximum thrust and/or propulsive efficiency. Unsteady, low speed viscous flows are computed using a Navier-Stokes solver in a parallel computing environment. A gradient based algorithm and Response Surface Methodology (RSM) are employed for optimization. The evaluation of gradient vector components and the design of experiments for RSM, which require unsteady solutions, are also carried out in parallel. Paral...
Citation Formats
M. Kaya, İ. H. Tuncer, K. D. Jones, and M. F. Platzer, “Optimization of aeroelastic flapping motion of thin airfoils in a biplane configuration for maximum thrust,” Miami, Florida, 2007, vol. 3, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57751.