Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fractal Dimensions and Entropies of Meragi Songs
Date
2013-05-24
Author
Aydemir, Adnan
Gündüz, Güngör
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
127
views
0
downloads
Cite This
Melodies can be treated as time series systems with the pitches (or frequencies of the notes) representing the values in subsequent intervals. The pattern of a melody can be revealed in a scattering diagram where pitches represent vertices, and the directed pathways which connect the former pitches to the next ones signify the relations established during the performance. The pathways form a pattern which is called animal diagram (or lattice animal) in the vocabulary of graph theory. The slopes of pathways can be used to characterize an animal diagram and thus to characterize a melody; and the scattering diagram can be used to find out the fractal dimension. In addition, the entropy, the maximum entropy, and the negentropy (or the order) of melodies can be determined. The analysis of Meragi songs in terms of fractal dimension and entropy was carried out in this work. It was found out that there is not a correlation between the fractal dimension and the entropy; therefore, the fractal dimension and the entropy each characterizes different aspects of Meragi songs.
Subject Keywords
Fractal dimension
,
Pink noise
,
Time series structure
,
Distinct note
,
Folk music
URI
https://hdl.handle.net/11511/57820
DOI
https://doi.org/10.1007/978-94-017-8704-8_6
Conference Name
NATO Advanced Research Workshop on New Challenges in Complex Systems - Disaster Forecasting, Crisis Modeling and Sustainable Development
Collections
Department of Chemical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Synchronization of linearly and nonlinearly coupled harmonic oscillators
Penbegül, Ali Yetkin; Tuna, Sezai Emre; Department of Electrical and Electronics Engineering (2011)
In this thesis, the synchronization in the arrays of identical and non-identical coupled harmonic oscillators is studied. Both linear and nonlinear coupling is considered. The study consists of two main parts. The first part concentrates on theoretical analysis and the second part contains the simulation results. The first part begins with introducing the harmonic oscillators and the basics of synchronization. Then some theoretical aspects of synchronization of linearly and nonlinearly coupled harmonic osci...
Broadband analogue predistortion using a distortion generator based on two-stage RF mixer topology
Nesimoglu, Tayfun (2018-01-01)
An analogue predistorter using a distortion generator based on a two-stage radio frequency mixer topology is presented. The proposed distortion generator achieves fundamental signal cancellation without using a signal cancellation loop or a resonant circuit, thus it generates an error signal that predominantly consists of unwanted intermodulation distortion (IMD). Measurements are performed using multi-tones, WLAN- and Terrestrial Trunked Radio (TETRA)-modulated signals. Distortion generator provides high l...
Electromagnetic target recognition with the fused MUSIC spectrum matrix method: Applications and performance analysis for incomplete frequency data
Secmen, Mustafa; Ekmekci, Evren; Sayan, Gönül (2007-01-01)
The aim of this paper is to apply an electromagnetic target recognition method, which is based on the use of fused MUSIC spectrum matrices, to the case of incomplete frequency domain data. The aforementioned method was suggested recently and succesfully applied to both canonical and complicated targets in the presence of complete frequency domain data [1]. However, most of the real world applications involve the use of severely incomplete frequency data, especially missing low frequency information. In this...
Comparison of Subjective and Objective Evaluation Methods for Audio Source Separation
Josef, Kornycky; Günel Kılıç, Banu; Ahmet, Kondoz (2008-01-01)
The evaluation of audio separation algorithms can either be performed objectively by calculation of numerical measures, or subjectively through listening tests. Although objective evaluation is inherently more straightforward, subjective listening tests are still essential in determining the perceived quality of separation. This paper aims to find relationships between objective and subjective results so that numerical values can be translated into perceptual criteria. A generic audio source separatio...
Application of an analytical model to an actual CDMA system feedforward linearizer
Coskun, A. Hakan; Demir, Şimşek (2003-01-01)
Analysis and design of feedforward systems are complicated due to the presence of two nonlinear amplifiers and the requirement of amplitude, delay, and phase match in two different loops. For this reason, analytical tools are hard to develop but are required for initial designs and understanding of the system performance. Relation of the actual systems and the models based on certain assumptions is necessary. In this work we extend the previously developed analytical model and present the verifications with...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Aydemir and G. Gündüz, “Fractal Dimensions and Entropies of Meragi Songs,” presented at the NATO Advanced Research Workshop on New Challenges in Complex Systems - Disaster Forecasting, Crisis Modeling and Sustainable Development, Samarkand, UZBEKISTAN, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57820.