Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development and modeling for process control purposes in PEMs
Date
2015-06-29
Author
Saygili, Yasemin
Kıncal, Serkan
Eroğlu, İnci
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
To maintain suitable operating conditions, polymer electrolyte membrane (PEM) fuel cell stacks require additional equipment and control systems. Fuel supply, power and thermal management, purge strategy and individual cell voltage control must be in place and operate reliably for a fuel cell system to achieve similar levels of performance as conventional energy generators. System design, auxiliary equipment selection and selection of control strategies have effects on fuel cell efficiency, durability and reliability. In this study we report on our efforts to develop the piping and instrumentation diagram of a 3 kW PEM fuel cell, including the control instrumentation. A semi-empirical model was put together to understand dynamic system behavior for purpose of evaluating possible operating scenarios, in an effort to have useful insight into the system during the equipment selection stage. The model complexity was reduced by ignoring the spatial variations and assuming isothermal stack operation. The stack, cooling system, humidifier, compressor, inlet and outlet manifold were modeled and integrated to formulate a comprehensive prototype model. This model was subsequently used to generate predictions for the responses of the compressor, humidifier, humidification of the stack, power and heat generation for a multitude of dynamic changes in load. With the predictive capability enabled by the model, equipment and algorithm selections can be made in a more directed fashion, reducing the initial design and development costs by delivering a hardware configuration that is close to an ideal one with minimal iterations. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
PEMFC
,
Fuel cell piping and instrumentation diagram
,
Integrated fuel cell modeling
,
Fuel cell control
URI
https://hdl.handle.net/11511/57852
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2014.10.116
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Modeling of a high temperature PEM fuel cell
Sezgin, Berna; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are considered as the next generation of fuel cells since high temperature operation for PEM fuel cells has several advantages such as single phase operation, high carbon monoxide tolerance, low or zero carbon emission and removal of some equipment from the system. In order to obtain high performances, HT-PEMFC systems should be optimized in terms of dimensions, materials, operating conditions and other parameters. Modeling can help to pre-...
Development of 500 W PEM fuel cell stack for portable power generators
DEVRİM, YILSER; Devrim, Huseyin; Eroğlu, İnci (2015-06-29)
Polymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 1...
Designing heat exchanger with spatially variable surface area for passive cooling of PEM fuel cell
Ozden, Ender; Tolj, Ivan; Barbir, Frano (2013-03-01)
The purpose of this work was to design a heat exchanger for a Polymer Electrolyte Membrane (PEM) fuel cell, which would ensure such a temperature profile along the fuel cell cathode channel resulting in close to 100% relative humidity along the channel without external humidification. To achieve this, 3D numerical simulations of a single PEM fuel cell were performed using commercial Computational Fluid Dynamics (CFD) software (ANSYS Fluent). Based on the simulation results a variable surface area finned hea...
Model based temperature controller development for water cooled PEM fuel cell systems
Saygili, Yasemin; Eroğlu, İnci; Kıncal, Serkan (2015-01-05)
PEM (proton exchange membrane) fuel cell operation necessitates thermal management to satisfy the requirements of safe and efficient operation by keeping the temperature within a certain range independent of varying load conditions. Heat generation within the fuel cell changes according to the power delivered from the stack, requiring a dynamic control system to remove this excess heat and maintain the desired stack temperature. In this study, a closed loop water circulation strategy is considered and evalu...
Development of 100w portable fuel cell system working with sodium borohydride
Erkan, Serdar; Eroğlu, İnci; Department of Chemical Engineering (2011)
Fuel cells are electricity generators which convert chemical energy of hydrogen directly to electricity by means of electrochemical oxidation and reduction reactions. A single proton exchange membrane (PEM) fuel cell can only generate electricity with a potential between 0.5V and 1V. The useful potential can be achieved by stacking cells in series to form a PEM fuel cell stack. There is a potential to utilize 100W class fuel cells. Fuelling is the major problem of the portable fuel cells. The aim of this th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Saygili, S. Kıncal, and İ. Eroğlu, “Development and modeling for process control purposes in PEMs,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 7886–7894, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57852.