Hide/Show Apps

Valid Inequalities for the Maximal Matching Polytope

Given a graph G=(V,E), a subset M of E is called a matching if no two edges in M are adjacent. A matching is said to be maximal if it is not a proper subset of any other matching. The maximal matching polytope associated with graph G is the convex hull of the incidence vectors of maximal matchings in G. In this paper, we introduce new classes of valid inequalities for the maximal matching polytope.