Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interaction of nitric oxide with elements
Date
2001-11-16
Author
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
Interaction of nitric oxide with elements has been investigated by performing density functional theory calculation within the effective core potential level. The structural, electronic, and vibrational properties of A-NO trimers have been calculated in their ground state.
Subject Keywords
Physical and Theoretical Chemistry
,
Biochemistry
,
Condensed Matter Physics
,
Nitric oxide
,
Density functional theory
,
Effective core potential
URI
https://hdl.handle.net/11511/58034
Journal
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
DOI
https://doi.org/10.1016/s0166-1280(01)00642-x
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Structure and electronic properties of heterofullerene C30B15N15
Erkoç, Şakir (Elsevier BV, 2004-09-27)
Structure and electronic properties of heterofullerene C30B15N15 has been investigated theoretically by performing semi-empirical molecular orbital calculation at PM3 level within RHF formalism and density functional theory at B3LYP level including MP2 correlation correction. The structure has been found stable in the ground state but endothermic. The isolated C30B15N15 has a net dipole moment value of about 3 Debyes, and frontier molecular orbital energy gap value of about I eV. These properties make this ...
Density functional theory calculations for mercury fulminate
Turker, L; Erkoç, Şakir (Elsevier BV, 2004-12-31)
The structural and electronic properties of isolated neutral mercury fulminate molecule (C2N2O2Hg) have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometry, vibrational frequencies, electronic structure, and some thermodynamical values of the molecule considered have been obtained in its ground state.
Theoretical investigation of sulforaphane molecule
Erkoç, Şakir; Erkoc, F (Elsevier BV, 2005-02-14)
The structural and electronic properties of the broccoli sulforaphane molecule have been investigated theoretically by performing semi-empirical molecular orbital (PM3) and density functional theory calculations. The geometry of the molecule has been optimized by PM3 method and the electronic properties and the vibrational spectra of the molecule have been calculated by density functional theory in its ground state.
Interaction of water molecule with silicon surfaces
Katırcıoğlu, Şenay (Elsevier BV, 1987-9)
In this work, a number of state density calculations are carried out to understand the binding states of adsorbed H2O on Si(111) and Si(100) surfaces and the spectra resulting therefrom. It is found that the angle between the molecular plane and the surface normal has a drastic effect on the adsorbate states. In the light of the IR, EELS and UPS experimental results, the LDOS calculations lead to the dissociative type adsorption of H2O on Si(111) and Si(100) surfaces excluding the molecular type.
Structural and electronic properties of ajoene molecule
Erkoç, Şakir; Sumer, S; Erkoc, F (Elsevier BV, 2003-08-01)
The structural and electronic properties of ajoene molecule have been investigated theoretically by performing semi-empirical molecular orbital theory calculations. The geometry of the system has been optimized and the electronic properties of the system considered has been calculated by semiempirical self-consistent-field molecular orbital theory at the AMI level within RHF formalism in its ground state.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç, “Interaction of nitric oxide with elements,”
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
, pp. 127–132, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58034.