Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stability criteria for linear Hamiltonian systems under impulsive perturbations
Download
index.pdf
Date
2014-03-01
Author
Kayar, Z.
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
66
downloads
Cite This
Stability criteria are given for planar linear periodic Hamiltonian systems with impulse effect by making use of a Lyapunov type inequality. A disconjugacy criterion is also established. The results improve the related ones in the literature for such systems.
Subject Keywords
Stability
,
Hamiltonian
,
Impulse
,
Periodic system
,
Lyapunov type inequality
URI
https://hdl.handle.net/11511/58045
Journal
APPLIED MATHEMATICS AND COMPUTATION
DOI
https://doi.org/10.1016/j.amc.2013.12.128
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Stability criteria for linear periodic impulsive Hamiltonian systems
Guseinov, G. Sh.; Zafer, Ağacık (2007-11-15)
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria
Zafer, Ağacık (2012-12-15)
In this paper, we first establish new Lyapunov type inequalities for discrete planar linear Hamiltonian systems. Next, by making use of the inequalities, we derive stability and disconjugacy criteria. Stability criteria are obtained with the help of the Floquet theory, so the system is assumed to be periodic in that case.
On periodic solutions of linear impulsive delay differential systems
Akhmet, Marat; Alzabut, J.O.; Zafer, Ağacık (2008-10-01)
A necessary and sufficient condition is established for the existence of periodic solutions of linear impulsive delay differential systems. Copyright © 2008 Watam Press.
On chaotic synchronization via impulsive control and piecewise constant arguments
Mohamad S, Alwan; Xınzhı, Lıu; Akhmet, Marat (2015-01-01)
This paper is concerned with a system of differential equations with continuous and piecewise constants arguments of a delay type. An application to chaotic systems is presented and the synchronization problem is established, where the output of the sender system, evaluated at the piecewise constant arguments, is transmitted to the receiver system. A global synchronization is achieved via impulsive effects, which are evaluated at the discrete arguments. The methodology of Lyapunov function together with lin...
Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Kayar and A. Zafer, “Stability criteria for linear Hamiltonian systems under impulsive perturbations,”
APPLIED MATHEMATICS AND COMPUTATION
, pp. 680–686, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58045.