Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sayindere cap rock integrity during possible CO2 sequestration in Turkey
Download
10.1016.j.egypro.2011.02.517.pdf
Date
2011
Author
Dalkhaa, Chantsalmaa
Okandan, Ender
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
170
downloads
Cite This
One way to reduce the amount of CO2 in the atmosphere for the mitigation of climate change is to capture the CO2 and inject it into geological formations. The most important public concern about carbon capture and storage (CCS) is whether stored CO2 will leak into groundwater sources and finally into the atmosphere. To prevent the leakage, the possible leakage paths and the mechanisms triggering the paths must be examined and identified. It is known that the leakage paths can be due to CO2 - rock interaction and CO2 - well interaction. The objective of this research is to identify the geochemical reactions of the dissolved CO2 in the synthetic formation water with the rock minerals of the Sayindere cap rock by laboratory experiments. It is also aimed to model and simulate the experiments using ToughReact software. Sayindere formation is a regionally extensive cap rock for many oil fields in southeastern Turkey. The mineralogical investigation and fluid chemistry analysis of the experiments show that calcite was dissolved from the cap rock core as a result of CO2- water- rock interaction. Using the reactive transport code TOUGHREACT, the modeling of the dynamic experiment is performed. Calcite, the main primary mineral in the Sayindere is dissolved first and then re-precipitated during the simulation process. The decreases of 0.01 % in the porosity and 0.03% in permeability of the packed core of the Sayindere cap rock are observed in the simulation. The simulation was continued for 25 years without CO2 injection. However, the results of this simulation show that the porosity and permeability are increased by 0.001 % and 0.004 %, respectively due to the CO2-water-rock mineral interaction. This shows that the Sayindere cap rock integrity must be monitored in the field if application is planned.
Subject Keywords
General Energy
,
CO2 storage
,
Cap rock integrity
,
CO2- water- rock interaction
,
Geochemical modeling and simulation
URI
https://hdl.handle.net/11511/58101
DOI
https://doi.org/10.1016/j.egypro.2011.02.517
Collections
Department of Petroleum and Natural Gas Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Cap rock integrity in CO₂ storage
Dalkhaa, Chantsalmaa; Okandan, Ender; Department of Petroleum and Natural Gas Engineering (2010)
One way to reduce the amount of CO2 in the atmosphere for the mitigation of climate change is to capture the CO2 and inject it into geological formations. The most important public concern about carbon capture and storage (CCS) is whether stored CO2 will leak into groundwater sources and finally into the atmosphere. To prevent the leakage, the possible leakage paths and the mechanisms triggering the paths must be examined and identified. It is known that the leakage paths can be due to CO2 - rock interactio...
Geochemical characterization of geothermal systems in western Anatolia (Turkey): implications for CO2 trapping mechanisms in prospective CO2-EGS sites
Elidemir, Sanem; Güleç, Nilgün Türkan (2018-02-01)
Geological storage of CO2 is currently regarded as one of the major strategies to mitigate the increasing CO2 concentrations in the atmosphere due to anthropogenic emissions from large-scale point sources. Enhanced geothermal systems (EGS) are a novel concept in which CO2 is used as a working fluid to increase energy recovery, combined with its subsurface storage. In this study, the geothermal systems of western Anatolia are considered as potential sites for EGS, and the published hydrogeochemical data rele...
Olası CO2 Depolama Sahaları Olarak Akköy ve Edremit Jeotermal Sistemlerindeki Akışkan - Kayaç Etkileşimlerinin Jeokimyasal Modellemesi: Ön Çalışma Sonuçları
Elidemir, Sanem; Güleç, Nilgün Türkan (2021-05-24)
CO2 ’in yeraltında depolanması, i) insan kaynaklı emisyonlardan dolayı atmosferdeki CO2 miktarındaki artışın ve ii) bu emisyonların, küresel ısınma ve iklim değişikliği üzerindeki istenmeyen etkilerinin azaltılması konusundaki başlıca stratejilerden bir tanesidir. Geliştirilmiş Jeotermal Sistemler (EGS), CO2 ’in rezervuara geri basımı ile enerji üretiminin arttırılmasının yanı sıra yeraltında depolanmasını sağlayan yenilikçi bir yaklaşımdır. Bu ön çalışma kapsamında, olası EGS sahaları olarak Batı Anadolu’d...
Geochemical modeling of CO2-water-rock interaction in indonesian geothermal fields for a possible future carbon capture and storage project
Utomo, Gagas Pambudi; Yılmaz, Koray K.; Department of Geological Engineering (2019)
The rise of CO2 concentration in Earth’s atmosphere from anthropogenic emissions is the main cause of global warming and climate change. Carbon Capture and Storage (CCS) is considered as an effective method to reduce such emission. CCS can be performed in various sites including geothermal reservoirs. This study is concerned with geochemical modeling of CO2-water-rock interaction for a possible future CCS project in Indonesian geothermal fields, namely Ungaran, Baturaden, Dieng and Awibengkok. The modeling ...
CO2 hydrogenation to methanol over supported copper and gallium based catalysts at the atmospheric pressure
Osmanağa, Sezer; İpek Torun, Bahar; Önal, Işık; Department of Chemical Engineering (2022-8)
The continuous increase of the CO2 concentration in the atmosphere has been negatively impacting the environment, due to its contribution in the global warming. Hence, it is necessary for the current CO2 valorization techniques to advance in order to make use of CO2. A possible technique is the CO2 hydrogenation to methanol and DME. The process of CO2 hydrogenation to methanol has been taking place in industry for about a century. However, due to the thermodynamic limitation imposed by the reaction stoichio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Dalkhaa and E. Okandan, “Sayindere cap rock integrity during possible CO2 sequestration in Turkey,” 2011, vol. 4, p. 5350, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58101.