Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods

Işın, Ali
Direkoğlu, Cem
Şah, Melike
Brain tumor segmentation is an important task in medical image processing. Early diagnosis of brain tumors plays an important role in improving treatment possibilities and increases the survival rate of the patients. Manual segmentation of the brain tumors for cancer diagnosis, from large amount of MRI images generated in clinical routine, is a difficult and time consuming task. There is a need for automatic brain tumor image segmentation. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. Recently, automatic segmentation using deep learning methods proved popular since these methods achieve the state-of-the-art results and can address this problem better than other methods. Deep learning methods can also enable efficient processing and objective evaluation of the large amounts of MRI-based image data. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. Different than others, in this paper, we focus on the recent trend of deep learning methods in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of deep learning methods are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed. (C) 2016 The Authors. Published by Elsevier B.V.


Evaluation and Analysis of Different Aggregation and Hyperparameter Selection Methods for Federated Brain Tumor Segmentation
Polat, Görkem; Işık Polat, Ece; Koçyiğit, Altan; Temizel, Alptekin (2021-9-27)
Availability of large, diverse, and multi-national datasets is crucial for the development of effective and clinically applicable AI systems in the medical imaging domain. However, forming a global model by bringing these datasets together at a central location, comes along with various data privacy and ownership problems. To alleviate these problems, several recent studies focus on the federated learning paradigm, a distributed learning approach for decentralized data. Federated learning leverages all the ...
Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling
Şener, Emre; Mumcuoğlu, Ünal Erkan; Hamcan, Salih (2016-02-01)
Background: Accurate segmentation of human head on medical images is an important process in a wide array of applications such as diagnosis, facial surgery planning, prosthesis design, and forensic identification.
Quality Enhancement of Computed Tomography Images of Porous Media Using Convolutional Neural Networks
Yıldırım, Ertuğrul Umut; Uğur, Ömür; Glatz, Guenther; Department of Scientific Computing (2022-2-11)
Computed tomography has been widely used in clinical and industrial applications as a non-destructive visualization technology. The quality of computed tomography scans has a strong effect on the accuracy of the estimated physical properties of the investigated sample. X-ray exposure time is a crucial factor for scan quality. Ideally, long exposure time scans, yielding large signal-to-noise ratios, are available if physical properties are to be delineated. However, especially in micro-computed tomography ap...
Mercadier, Deniz Sayin; Beşbınar, Beril; Frossard, Pascal (2019-01-01)
Accurate and fast segmentation of nuclei in histopathological images plays a crucial role in cancer research for detection and grading, as well as personal treatment. Despite the important efforts, current algorithms are still suboptimal in terms of speed, adaptivity and generalizability. Popular Deep Convolutional Neural Networks (DCNNs) have recently been utilized for nuclei segmentation, outperforming traditional approaches that exploit color and texture features in combination with shallow classifiers o...
Implement of three segmentation algorithms for CT images of torso
Öz, Sinan; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2011)
Many practical applications in the field of medical image processing require valid and reliable segmentation of images. In this dissertation, we propose three different semi-automatic segmentation frameworks for 2D-upper torso medical images to construct 3D geometric model of the torso structures. In the first framework, an extended version of the Otsu’s method for three level thresholding and a recursive connected component algorithm are combined. The segmentation process is accomplished by first using Ext...
Citation Formats
A. Işın, C. Direkoğlu, and M. Şah, “Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods,” 2016, vol. 102, p. 317, Accessed: 00, 2020. [Online]. Available: