Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New Algorithms for Host Pathogen Systems Biology (SYSPATHO)
Download
CORDIS_260429_Report.pdf
CORDIS_260429_FactSheet.pdf
Date
2015-3-31
Author
Can, Tolga
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
57
downloads
Cite This
SYSPATHO focuses on the development of novel and generally applicable mathematical methods and algorithms for systems biology. These methods and algorithms will be applied to study the complex interactions of hepatitis C virus (HCV), a human-pathogenic virus of high medical relevance, with its host at the systems level. Using a multidisciplinary, integrative approach, PATHOSYS will (a) develop methods to analyze and integrate a wide variety of data from wet lab experiments, databases and biological literature, (b) develop and apply machine learning tools to reconstruct and study intracellular interaction networks from experimental data, (c) develop new and improve existing algorithms and mathematical methods for bottom-up modelling, to fit models to data, and to analyze the dynamic behaviour of models (d) generate new experimental data to gain novel insights into hepatitis C virus host interactions, and (e) use the newly developed methods and data to model and analyze HCV-host interactions at the systems level. Guided by biological data, PATHOSYS focuses on the design of novel algorithms and mathematical methods for systems biology, with the aim to provide generally applicable tools to elucidate biological processes. Based on developed models and using systems analysis, PATHOSYS will elucidate virus host interactions of Hepatitis C virus at an unprecedented level. As a direct spin-off, models and analysis methods developed in PATHOSYS will lead to the identification of new candidate host cell target genes applicable for the design of novel anti-viral drugs against hepatitis C. Targeting of host cell factors will reduce the likelihood for the development of therapy resistance and increase the chance for broad-spectrum antivirals. Inclusion of two SME partners will ensure exploitation of results generated in PATHOSYS and their transfer into industrial and pharmaceutical applications, thus strengthening economy and health care system in Europe.
Subject Keywords
Host-pathogen interactions
,
Systems biology
,
Hepatitis C virus
,
Model
,
Interferon
URI
https://cordis.europa.eu/project/id/260429
https://hdl.handle.net/11511/58277
Collections
Department of Biology, Project and Design
Suggestions
OpenMETU
Core
A pattern classification approach for boosting with genetic algorithms
Yalabık, Ismet; Yarman Vural, Fatoş Tunay; Üçoluk, Göktürk; Şehitoğlu, Onur Tolga (2007-11-09)
Ensemble learning is a multiple-classifier machine learning approach which produces collections and ensembles statistical classifiers to build up more accurate classifier than the individual classifiers. Bagging, boosting and voting methods are the basic examples of ensemble learning. In this study, a novel boosting technique targeting to solve partial problems of AdaBoost, a well-known boosting algorithm, is proposed. The proposed system finds an elegant way of boosting a bunch of classifiers successively ...
A deep learning approach for the transonic flow field predictions around airfoils
Duru, Cihat; Alemdar, Hande; Baran, Özgür Uğraş (2022-01-01)
Learning from data offers new opportunities for developing computational methods in research fields, such as fluid dynamics, which constantly accumulate a large amount of data. This study presents a deep learning approach for the transonic flow field predictions around airfoils. The physics of transonic flow is integrated into the neural network model by utilizing Reynolds-averaged Navier–Stokes (RANS) simulations. A detailed investigation on the performance of the model is made both qualitatively and quant...
Various parameter estimation techniques for stochastic differential equations
Ergişi, Semi; Vardar Acar, Ceren; Department of Statistics (2019)
Dynamic systems appear in many fields from economics to physics, from biology toengineering include randomness. Therefore, stochastic differential equations are oneof the necessary mathematical tools to model dynamic systems in these disciplines.In this study, we propose two parameter estimation methods when modelling withSDEs which are driven by Brownian motion. Maximum likelihood estimation andgeneralized method of moment techniques are used to estimate parameters and it isobtained that when the assumptio...
A Petri Net-based inference network for design automation under nondeterminism applied to mechatronic systems
Erden, Zühal; Erkmen, Aydan Müşerref; Erden, Abdülkadir (1998-09-11)
This paper introduces the completed part of an ongoing research, in which a Petri Net-based design inference network is developed for the representation and analysis of the functions and their interrelationships through information flow for the conceptual design stage of mechatronic systems in order to facilitate design automation. The theoretical framework behind the network is based on transition of Hybrid Automata into Petri Nets and application of this framework is introduced by a mechatronic design exa...
New transitive closure algorithm for recursive query processing in deductive databases
Toroslu, İsmail Hakkı (1992-01-01)
© 1992 IEEE.The development of effic1.e11t algorithms to process the different forms of the transitive-closure (TC) queries within the context of large database systems has recently attracted a large amom1t of research efforts. In this paper, we present a neic algorithm suitable for full transitive closure problem, which zs used to solve uninstentiated recursive qi1enes in deductive databases. In this new algorithm there are two phases. In the first phase a general graph is condensed into an acyclic graph a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Can, “New Algorithms for Host Pathogen Systems Biology (SYSPATHO),” 2015. Accessed: 00, 2020. [Online]. Available: https://cordis.europa.eu/project/id/260429.