Japan and Europe Network for Neutrino and Intensity Frontier Experimental Research (JENNIFER)

European particle physics groups interested in searching signals of new physics both with neutrinos, at T2K experiment, and at the intensity frontier, with the Belle-II experiment at the SUPERKEKB machine, want to share between them and with KEK laboratory their knowledge in data analysis and detector technologies. Such knowledge sharing will enhance skills and competences of all participants, will allow Europe to play a primary role in the search for deviations from the actually known fundamental physics in the flavour sector and, last but not least, will produce an unprecedented collaboration with japanese scientists on the ground of dissemination and outreach.


Marine Ecosystem Evolution in a Changing Environment (MEECE)
Salihoğlu, Barış(2013-2-28)
MEECE is a scientific research project which aims to use a combination of data synthesis, numerical simulation and targeted experimentation to further our knowledge of how marine ecosystems will respond to combinations of multiple climate change and anthropogenic drivers. With an emphasis on the European Marine Strategy (EMS), MEECE will improve the decision support tools to provide a structured link between management questions and the knowledge base that can help to address those questions. A strong knowl...
Perfect gas navier-stokes solutions hypersonic boundary layer and compression corner flows
Aziz, Şaduman; Çelenligil, Mehmet Cevdet; Department of Aerospace Engineering (2005)
The purpose of this thesis is to perform numerical solutions of hypersonic, high temperature, perfect gas flows over various geometries. Three dimensional, thin layer, compressible, Navier-Stokes equations are solved. An upwind finite difference approach with Lower Upper-Alternating Direction Implicit (LU-ADI) decomposition is used. Solutions of laminar, hypersonic, high temperature, perfect gas flows over flat plate and compression corners (qw=5°, 10°, 14°, 15°, 16°, 18° and 24°) with eight different free-...
Computational representation of protein sequences for homology detection and classification
Oğul, Hasan; Mumcuoğlu, Ünal Erkan; Department of Information Systems (2006)
Machine learning techniques have been widely used for classification problems in computational biology. They require that the input must be a collection of fixedlength feature vectors. Since proteins are of varying lengths, there is a need for a means of representing protein sequences by a fixed-number of features. This thesis introduces three novel methods for this purpose: n-peptide compositions with reduced alphabets, pairwise similarity scores by maximal unique matches, and pairwise similarity scores by...
Constituting financialized subjectivities: cultural political economy of financial literacy in Turkey
Ayhan, Berkay (Informa UK Limited, 2019-10-20)
A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb−1, with 4.9 fb−1 at 7 TeV and 19.7 fb−1 at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in ...
Frequency-resolved spectroscopy of XB1323-619 using XMM-Newton data: detection of a reflection region in the disc
Balman, Şölen (Oxford University Press (OUP), 2010-09-21)
We present the frequency-resolved energy spectra (FRS) of the low-mass X-ray binary dipper XB1323-619 during persistent emission in four different frequency bands using an archival XMM-Newton observation. FRS method helps to probe the inner zones of an accretion disc. XB1323-619 is an Atoll source and a type-I burster. We find that the FRS is well described by a single blackbody component with kT in a range 1.0-1.4 keV responsible for the source variability in the frequency ranges of 0.002-0.04 and 0.07-0.3...
Citation Formats
M. T. Zeyrek, “Japan and Europe Network for Neutrino and Intensity Frontier Experimental Research (JENNIFER),” 2019. Accessed: 00, 2020. [Online]. Available: https://cordis.europa.eu/project/id/644294.