Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Fully-Implantable MEMS-Based Autonomous Cochlear Implant (FLAMENCO)
Download
CORDIS_project_682756_en-Fact sheet.pdf
CORDIS_project_682756_en-Reporting.pdf
CORDIS_project_682756_en-Results.pdf
Date
2021-6-30
Author
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
110
views
1
downloads
Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs. FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Subject Keywords
Medical and health sciences
,
Medical biotechnology
,
Medical bioproducts
,
Implants
URI
https://cordis.europa.eu/project/id/682756
https://hdl.handle.net/11511/62243
Collections
Department of Electrical and Electronics Engineering, Project and Design