ENabling Onshore CO2 Storage in Europe (ENOS)

2020-8-31
To meet the ambitious EC target of an 80% reduction in greenhouse gas emissions by 2050, CO2 Capture and Storage (CCS) needs to move rapidly towards full scale implementation with geological storage solutions both on and offshore. Onshore storage offers increased flexibility and reduced infrastructure and monitoring costs. Enabling onshore storage will support management of decarbonisation strategies at territory level while enhancing security of energy supply and local economic activities, and securing jobs across Europe. However, successful onshore storage also requires some unique technical and societal challenges to be overcome. ENOS will provide crucial advances to help foster onshore CO2 storage across Europe through: 1) Developing, testing and demonstrating in the field, under “real-life conditions”, key technologies specifically adapted to onshore storage. 2) Contributing to the creation of a favourable environment for onshore storage across Europe. The ENOS site portfolio will provide a great opportunity for demonstration of technologies for safe and environmentally sound storage at relevant scale. Best practices will be developed using experience gained from the field experiments with the participation of local stakeholders and the lay public. This will produce improved integrated research outcomes and increase stakeholder understanding and confidence in CO2 storage. In this improved framework, ENOS will catalyse new onshore pilot and demonstration projects in new locations and geological settings across Europe, taking into account the site-specific and local socio-economic context. By developing technologies from TRL4/5 to TRL6 across the storage lifecycle, feeding the resultant knowledge and experience into training and education and cooperating at the pan-European and global level, ENOS will have a decisive impact on innovation and build the confidence needed for enabling onshore CO2 storage in Europe.

Suggestions

Assessment of renewable energy based micro-grids for small communities
Sadati, S.M. Sajed; Taylan, Onur; Sustainable Environment and Energy Systems (2016-7)
Deploying renewable energy systems to supply electricity faces many challenges related to cost and variability of the renewable resources. One possible solution to these challenges is to hybridize renewable energy systems with conventional power systems and include energy storage systems. In this study, the feasibility analysis of two cases for electricity generation systems as (i) photovoltaic (PV)-battery-pumped hydro system (PHS) and (ii) PV-wind-battery are presented as a Renewable Energy Micro-Gr...
An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies
Al-Ghussain, Loiy; Taylan, Onur; Baker, Derek Keıth (Wiley, 2019-01-01)
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro-grid; (1) with pumped hydro storage (PHS) as a long-term ESS, (2) with batteries as a short-term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (F-RES) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the ...
GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey
Aydin, Nazli Yonca; Kentel Erdoğan, Elçin; Duzgun, H. Sebnem (Elsevier BV, 2013-06-01)
Renewable energy sources are presently being considered as alternatives to fossil fuels, because they are perpetual, environmentally friendly, and release negligible amounts of greenhouse gases to the atmosphere while producing energy. A disadvantage of renewable energy systems, however, is that continuous energy generation is not possible by using only one type of renewable energy system, since renewable energy resources depend on climate and weather conditions. Two or more renewable energy systems can be ...
Implementation of horizontal well CBM/ECBM technology and the assessment of effective CO2 storage capacity in a Scottish coalfield
Sınayuç, Çağlar; Imrie, Claire E.; Syed, S. Amer; Korre, Anna; Durucan, Sevket (Elsevier BV, 2011-01-01)
In this study the theoretical and effective methane recovery and CO2 storage potential of four coal seams within a well characterised section of a CBM license in Scotland are estimated, considering different horizontal well patterns, the effect of permeability heterogeneity and the composition of the injected fluid. The study concerns the Airth area of the Clackmannan coalfield in the Scottish Midland Valley. The effort on building the static earth model and the history match results of the pre-existing ver...
Accelerating mitigation of climate change with sustainable development of energy, water and environment systems
Kılkış, Şiir; Krajacic, Goran; Duic, Neven; Rosen, Marc A.; Al-Nimr, Moh'd Ahmad (2021-10-01)
Integrated approaches across energy, water and environment systems can accelerate the process of mitigating climate change through urgent action. New scientific advances that extend multiple opportunities in this direction have emanated from the 2nd Latin American, 1st Asia Pacific, 4th South East European and 15th Conferences on Sustainable Development of Energy, Water and Environment Systems as represented in this editorial. The review of recent scientific advances connects the 27 research articles in thi...
Citation Formats
Ç. Sınayuç, “ENabling Onshore CO2 Storage in Europe (ENOS),” 2020. Accessed: 00, 2020. [Online]. Available: https://cordis.europa.eu/project/id/653718.