AM1 treatment of azacyclophanes

Türker, Burhan Lemi
AM1 type semiempirical quantum chemical calculations on various mono and diazacyclophanes having 23 and 4 phane-bridges were carried out. The results were related to the Hamiltonicity or non-Hamiltonocity of the corresponding molecular graphs.


AM1 treatment of phenylboronic acid esters of glycerol
Türker, Burhan Lemi (Elsevier BV, 2004-05-14)
Phenylboronic acid esters of glycerol, which involve 1,2- and 1,3-sites of glycerol for esterification followed by complex formation with the remaining -OH group of glycerol have been considered for AM1(RHF) type semiempirical quantum chemical calculations, in vacuum as well as in aqueous medium. All the species were found to be stable and exothermic. The stability order among the various species considered was established. 1,2-type ester in vacuum or aqueous medium was found to be more stable than the resp...
AM1 treatment of (Be plus nH(2)) @C-70 systems
Türker, Burhan Lemi (Elsevier BV, 2004-01-23)
AM1 type semiempirical quantum chemical calculations at the level of restricted Hartree-Fock approach have been performed on endohedrally Be and various numbers of hydrogen doped C-70 system. The results indicate that (Be + nH(2))@C-70 (0 less than or equal to n less than or equal to 10) structures are stable and highly endothermic in nature. Moreover, interactions between the endohedral substituents and the cage are weak.
AM1 treatment of some (nH(2)+mC)@C-60 systems
Türker, Burhan Lemi (Elsevier BV, 2004-07-05)
Some (nH(2) + MC)@C-60 systems (2H(2) + 4C)@C-60, (3H(2) + 4C)@C-60 and (H-2 + 5C)@C-60, are considered for AM1 (RHF) type semiempirical quantum chemical treatment. They were found to be stable and endothermic. In the case of (2H(2) + 4C)@C-60 and (H-2 + 5C)@C-60 systems, one of the hydrogen molecules possess elongated sigma-bonding indicative of some sort of homolytic dissociation.
AM1 treatment of endohedrally hydrogen doped fullerene, nH(2)@C-60
Turker, L; Erkoç, Şakir (Elsevier BV, 2003-10-24)
Endohedrally hydrogen doped C-60 systems, nH(2)@C-60 (n : 9,12,15,19,21,24) have been theoretically investigated at the level of AMI (RHF) type quantum chemical treatment. It has been found that n : 24 is the maximum number of hydrogen molecules which should result a stable composite system. The calculations indicate that all these structures are stable but highly endothermic. Also some geometrical and physicochemical properties of these structures are reported.
PM3 treatment of some endohedrally Mg doped C60H2 systems
Türker, Burhan Lemi (Elsevier BV, 2002-12-09)
Semiempirical quantum chemical calculations at the level of PM3 (RHF) were carried out on the regio and stereoisomers of endohedrally magnesium doped C60H2 system, Mg@C60H2. In these systems, hydrogens occupy vicinal positions at the fusion sites of five and six membered rings or at the fusion points of two hexagons. All the structures were found to be stable but endothermic. In the case of In-56Mg@C60H2 some quasi-hydride interaction occurs between the inwardly oriented hydrogens and the endohedral substit...
Citation Formats
B. L. Türker, “AM1 treatment of azacyclophanes,” JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, pp. 193–197, 2002, Accessed: 00, 2020. [Online]. Available: