Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A novel approach to chemical resemblance of alternant hydrocarbons
Date
2002-02-14
Author
Türker, Burhan Lemi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Within the constraints of the Huckel molecular orbital theory, a topological approach has been developed for the resemblance of alternant hydrocarbons. Four topological variables are considered which categorize alternant hydrocarbons having some resemblance of certain degree between them. Depending on variations of these topological variables, various groups of the compounds, including the identity case, various isomers and nonresembling systems have been investigated.
Subject Keywords
Angle of total mu-electron energy
,
Total pi-electron energy
,
Isospectral molecules
,
Isomerism
,
Resemblance
,
Alternant hydrocarbons
URI
https://hdl.handle.net/11511/62377
Journal
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
DOI
https://doi.org/10.1016/s0166-1280(01)00713-8
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
On the mystery of the azimuthal angle of alternant hydrocarbons
Türker, Burhan Lemi (2002-07-05)
Within the limitations of the Huckel molecular orbital theory, the concept of resemblance of alternant hydrocarbons has been extended by investigating certain angles which are effective on the fine topologies of these structures.
A topological approach to the stabilities of isomeric Huckel and Mobius type cyclacenes
Türker, Burhan Lemi (1997-01-01)
Within the constraints of Huckel molecular orbital theory, Huckel and Mobius type cyclacenes were investigated in terms of their angle of total pi-electron energy, O pi, and cos O pi to find out how structural changes affect the stabilities. It has been theoretically deduced that as the number of benzenoid rings (R) increases the isomeric Huckel and Mobius type cyclacenes should have comparable stabilities, although for low values of R odd-Huckel type and even-Mobius type are predicted to be more stable.
A density functional theory study on the structural and electronic properties of PbxSbySez (x plus y plus z=2, 3) clusters
Pekoz, Rengin; Erkoç, Şakir (2018-01-30)
The structural and electronic properties of neutral ternary PbxSbySez clusters (x y + z = 2, 3) in their ground states have been explored by means of density functional theory calculations. The geometric structures and binding energies are systematically explored and for the most stable configurations of each cluster type vibrational frequencies, charges on atoms, energy difference between highest occupied and lowest unoccupied molecular orbitals, and the possible dissociations channels have been analyzed. ...
Iterative estimation of total π-electron energy
Türker, Lemi; Gutman, Ivan (National Library of Serbia, 2005)
In this work, the lower and upper bounds for total -electron energy (E) was studied. A method is presented, by means of which, starting with a lower bound EL and an upper bound EU for E, a sequence of auxiliary quantities E0, E1, E2, … is computed, such that E0 = EL, E0 < E1 < E2 < …, and E = EU. Therefore, an integer k exists, such that Ek E < Ek+1. If the estimates EL and EU are of the McClelland type, then k is called the McClelland number. For almost all benzenoid hydrocarbons, k = 3.
New fuzzy extra dimensions from SU(N) gauge theories
Kürkcüoğlu, Seçkin (2015-07-16)
We start with an SU(N) Yang-Mills theory on a manifold M, suitably coupled to scalar fields in the adjoint representation of SU(N), which are forming a doublet and a triplet, respectively, under a global SU(2) symmetry. We show that a direct sum of fuzzy spheres S-F(2 Int) := S-F(2)(l) circle plus S-F(2)(l) circle plus S-F(2)(l + 1/2) circle plus S-F(2)(l - 1/2) emerges as the vacuum solution after the spontaneous breaking of the gauge symmetry and paves the way for us to interpret the spontaneously broken ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. L. Türker, “A novel approach to chemical resemblance of alternant hydrocarbons,”
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
, pp. 191–197, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62377.