Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
APPROACH TO THE SHIFTED 1/N EXPANSION FOR THE KLEIN-GORDON EQUATION
Download
index.pdf
Date
1991-06-01
Author
MUSTAFA, O
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
136
views
0
downloads
Cite This
A different approach to the shifted 1/N expansion technique is developed to deal with the Klein-Gordon particle trapped in a spherically symmetric potential. Properly modifying the definition of the perturbative expansion of the energy eigenvalue, and without making any approximation in the determination of the parameters involved, we obtain sufficiently good results compared with the exact ones for the Coulomb problem. The calculations are carried out to the second-order correction of the energy series.
Subject Keywords
Large-n-expansion
,
Dirac-equation
,
1-N expansion
,
Potentials
URI
https://hdl.handle.net/11511/62437
Journal
PHYSICAL REVIEW A
DOI
https://doi.org/10.1103/physreva.43.5787
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
APPROACH TO THE SHIFTED 1/N EXPANSION FOR SPIN-1/2 RELATIVISTIC PARTICLE
MUSTAFA, O; Sever, Ramazan (1993-01-01)
A different approach to the shifted 1/N expansion method is developed to deal with the Dirac particle trapped in a spherically symmetric potential. The main aspects of our approach are to expand the energy term in a perturbative form and to determine the parameters involved without any approximation. While the formalism is developed for spin-1/2 particles in any spherically symmetric potential, it is applied to the Coulomb case for testing. The calculations are carried out to the third-order correction of t...
Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
Arda, Altug; Sever, Ramazan (2015-09-01)
The energy eigenvalues of a Dirac particle for the hyperbolic-type potential field have been computed approximately. It is obtained a transcendental function of energy, F(E), by writing in terms of confluent Heun functions. The numerical values of energy are then obtained by fixing the zeros on "E-axis" for both complex functions Re[F(E)] and Im[F(E)].
Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions
Okorie, Uduakobong S.; Ikot, Akpan N.; Edet, C. O.; Akpan, I. O.; Sever, Ramazan; Rampho, R. (2019-09-01)
We solve the D- dimensional Klein-Gordon equation with a newly proposed generalized hyperbolic potential model, under the condition of equal scalar and vector potentials. The relativistic bound state energy equation has been obtained via the functional analysis method. We obtained the relativistic and non-relativistic ro-vibrational energy spectra for different diatomic molecules. The numerical results for these diatomic molecules tend to portray inter-dimensional degeneracy symmetry. Variations of the ener...
On solutions of the Schrodinger equation for some molecular potentials: wave function ansatz
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrodinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, delta and nu are also given, where eta depends on a linear combination of the angular momentum quantum number l and the spatial dimensions D and delta is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigenso...
On the exact solution of the Schrodinger equation with a quartic anharmonicity
Taşeli, Hasan (1996-01-05)
A new version of solutions in the form of an exponentially weighted power series is constructed for the two-dimensional circularly symmetric quartic oscillators, which reflects successfully the desired properties of the exact wave function. The regular series part is shown to be the solution of a transformed equation. The transformed equation is applicable to the one-dimensional problem as well. Moreover, the exact closed-form eigenfunctions of the harmonic oscillator can be reproduced as a special case of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. MUSTAFA and R. Sever, “APPROACH TO THE SHIFTED 1/N EXPANSION FOR THE KLEIN-GORDON EQUATION,”
PHYSICAL REVIEW A
, pp. 5787–5789, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62437.