Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Interacting quantum topologies and the quantum Hall effect
Download
index.pdf
Date
2008-04-10
Author
Balachandran, A. P.
Gupta, Kumar S.
Kürkcüoğlu, Seçkin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
4
downloads
The algebra of observables of planar electrons subject to a constant background magnetic field B is given by A(theta)(R-2) circle times A(theta)(R-2) (theta = -4/eB), the product of two mutually commuting Moyal algebras. It describes the free Hamiltonian and the guiding center coordinates. We argue that A(theta)(R-2) itself furnishes a representation space for the actions of these two Moyal algebras, and suggest physical arguments for this choice of the representation space. We give the proper setup to couple the matter fields based on A(theta)(R-2) to electromagnetic fields which are described by the Abelian commutative gauge group G(c)(U(1)), i.e. gauge fields based on A(0)(R-2). This enables us to give a manifestly gauge covariant formulation of integer quantum Hall effect (IQHE). Thus, we can view IQHE as an elementary example of interacting quantum topologies, where matter and gauge fields based on algebras A(theta)' with different theta' appear. Two-particle wave functions in this approach are based on A(theta)(R-2) circle times A(theta)(R-2). We find that the full symmetry group in IQHE, which is the semidirect product SO(2) x G(c)(U(1)) acts on this tensor product using the twisted coproduct Delta(theta). Consequently, as we show, many particle sectors of each Landau level have twisted statistics. As an example, we find the twisted two particle Laughlin wave functions.
Subject Keywords
Nuclear and High Energy Physics
,
Astronomy and Astrophysics
,
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/45767
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
DOI
https://doi.org/10.1142/s0217751x08039888
Collections
Department of Physics, Article