Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential

Download
2008-03-01
IKHDAİR, SAMEER
Sever, Ramazan
The Klein-Gordon equation in D-dimensions for a recently proposed ring-shaped Kratzer potential is solved analytically by means of the conventional Nikiforov-Uvarov method. The exact energy bound states and the corresponding wave functions of the Klein-Gordon are obtained in the presence of the non-central equal scalar and vector potentials. The results obtained in this work are more general and can be reduced to the standard forms in three dimensions given by other works.
CENTRAL EUROPEAN JOURNAL OF PHYSICS

Suggestions

Improved analytical approximation to arbitrary l-state solutions of the Schrodinger equation for the hyperbolical potential
IKHDAİR, SAMEER; Sever, Ramazan (2009-04-01)
A new approximation scheme to the centrifugal term is proposed to obtain the l not equal 0 bound-state solutions of the Schrodinger equation for an exponential-type potential in the framework of the hypergeometric method. The corresponding normalized wave functions are also found in terms of the Jacobi polynomials. To show the accuracy of the new proposed approximation scheme, we calculate the energy eigenvalues numerically for arbitrary quantum numbers n and l with two different values of the potential par...
Exact solutions of the D-dimensional Schrodinger equation for a ring-shaped pseudoharmonic potential
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
A new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form V(r, theta) = 1/8 Kr-e(2) (r/r(e) - r(e)/r)(2) + beta cos(2)theta/r(2)sin(2)theta. The energy eigenvalues and eigenfunctions of the bound-states for the Schrodinger equation in D-dimensions for this potential are obtained analytically by using the Nikiforov-Uvarov method. The radial and angular parts of the wave functions are obtained in terms of orthogonal L...
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Exact solution of Schrodinger equation with deformed ring-shaped potential
Aktas, M; Sever, Ramazan (2005-01-01)
Exact solution of the Schrodinger equation with deformed ring-shaped potential is obtained in the parabolic and spherical coordinates. The Nikiforov-Uvarov method is used in the solution. Eigenfunctions and corresponding energy eigenvalues are calculated analytically. The agreement of our results is good.
Citation Formats
S. IKHDAİR and R. Sever, “Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential,” CENTRAL EUROPEAN JOURNAL OF PHYSICS, pp. 141–152, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62485.