Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Approximate Analytical Solutions of Dirac Equation with Spin and Pseudo Spin Symmetries for the Diatomic Molecular Potentials Plus a Tensor Term with Any Angular Momentum
Download
index.pdf
Date
2013-11-01
Author
Akçay, Hüseyin
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Poschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.
Subject Keywords
Asymptotic iteration method
,
Schrodinger-equation
,
Mechanics
,
Construction
,
Spectrum
URI
https://hdl.handle.net/11511/62505
Journal
FEW-BODY SYSTEMS
DOI
https://doi.org/10.1007/s00601-012-0510-3
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Approximate analytical solutions of a two-term diatomic molecular potential with centrifugal barrier
Arda, Altug; Sever, Ramazan (2012-08-01)
Approximate analytical bound state solutions of the radial Schrodinger equation are studied for a two-term diatomic molecular potential in terms of the hypergeometric functions for the cases where q >= 1 and q = 0. The energy eigenvalues and the corresponding normalized wave functions of the Manning-Rosen potential, the 'standard' Hulthen potential and the generalized Morse potential are briefly studied as special cases. It is observed that our analytical results are the same with the ones obtained before.
Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum
Akçay, Hüseyin; Sever, Ramazan (2012-08-01)
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
Approximate Analytical Solutions of the Dirac Equation for Yukawa Potential Plus Tensor Interaction with Any kappa-Value
Arda, Altug; Sever, Ramazan (2013-11-01)
Approximate analytical solutions of the Dirac equation are obtained for the Yukawa potential plus a tensor interaction with any kappa-value for the cases having the Dirac equation pseudospin and spin symmetry. The potential describing tensor interaction has a Yukawa-like form. Closed forms of the energy eigenvalue equations and the spinor wave functions are computed by using the Nikiforov-Uvarov method. It is observed that the energy eigenvalue equations are consistent with the ones obtained before. Our num...
Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
Arda, Altug; Sever, Ramazan (2015-09-01)
The energy eigenvalues of a Dirac particle for the hyperbolic-type potential field have been computed approximately. It is obtained a transcendental function of energy, F(E), by writing in terms of confluent Heun functions. The numerical values of energy are then obtained by fixing the zeros on "E-axis" for both complex functions Re[F(E)] and Im[F(E)].
Approximate analytical solutions of the Klein-Gordon equation for the Hulthen potential with the position-dependent mass
Arda, Altug; Sever, Ramazan; TEZCAN, CEVDET (IOP Publishing, 2009-01-01)
The Klein-Gordon equation is solved approximately for the Hulthen potential for any angular momentum quantum number l with the position-dependent mass. Solutions are obtained by reducing the Klein-Gordon equation into a Schrodinger-like differential equation using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the wavefunctions. It is found that the results in the case of constant mass are in good agreement with the ones obtain...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Akçay and R. Sever, “Approximate Analytical Solutions of Dirac Equation with Spin and Pseudo Spin Symmetries for the Diatomic Molecular Potentials Plus a Tensor Term with Any Angular Momentum,”
FEW-BODY SYSTEMS
, pp. 1839–1850, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62505.