Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum

Download
2012-08-01
Akçay, Hüseyin
Sever, Ramazan
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
JOURNAL OF MATHEMATICAL CHEMISTRY

Suggestions

Approximate analytical solutions of a two-term diatomic molecular potential with centrifugal barrier
Arda, Altug; Sever, Ramazan (2012-08-01)
Approximate analytical bound state solutions of the radial Schrodinger equation are studied for a two-term diatomic molecular potential in terms of the hypergeometric functions for the cases where q >= 1 and q = 0. The energy eigenvalues and the corresponding normalized wave functions of the Manning-Rosen potential, the 'standard' Hulthen potential and the generalized Morse potential are briefly studied as special cases. It is observed that our analytical results are the same with the ones obtained before.
Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
On solutions of the Schrodinger equation for some molecular potentials: wave function ansatz
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrodinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, delta and nu are also given, where eta depends on a linear combination of the angular momentum quantum number l and the spatial dimensions D and delta is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigenso...
Exact solution of Schrodinger equation for Pseudoharmonic potential
Sever, Ramazan; TEZCAN, CEVDET; Aktas, Metin; Yesiltas, Oezlem (2008-02-01)
Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n <= 5 for some diatomic molecules.
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Citation Formats
H. Akçay and R. Sever, “Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum,” JOURNAL OF MATHEMATICAL CHEMISTRY, pp. 1973–1987, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62540.