Exact Solutions of the Morse-like Potential, Step-Up and Step-Down Operators via Laplace Transform Approach

Download
2012-07-01
Arda, Altug
Sever, Ramazan
We intend to realize the step-up and step-down operators of the potential V(x) = V(1)e(2 beta x) + V-2(e beta x). It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions and the eigenvalues of the potential by using the Laplace transform approach to study the Lie algebra satisfied the ladder operators of the potential under consideration. Our results are similar to the ones obtained for the Morse potential (beta ->-beta).
COMMUNICATIONS IN THEORETICAL PHYSICS

Suggestions

Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV
Khachatryan, V.; et. al. (American Physical Society (APS), 2017-01-01)
An inclusive search for supersymmetry using razor variables is performed in events with four or more jets and no more than one lepton. The results are based on a sample of proton-proton collisions corresponding to an integrated luminosity of 2.3 fb(-1) collected with the CMS experiment at a center-ofmass energy of s root s = 13 TeV. No significant excess over the background prediction is observed in data, and 95% confidence level exclusion limits are placed on the masses of new heavy particles in a variety ...
Shortcuts to spherically symmetric solutions: a cautionary note
Deser, S; Franklin, J; Tekin, Bayram (IOP Publishing, 2004-11-21)
Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the surviving metric components. This shortcut is not to be overdone; however, a one-function ansatz invalidates it, as illustrated by the incorrect solutions of Wohlfarth (2004 Class. Quantum Grav. 21 1927).
Magnetic field and curvature effects on pair production. II. Vectors and implications for chromodynamics
Karabali, D.; Kürkcüoğlu, Seçkin; Nair, V. P. (American Physical Society (APS), 2019-09-17)
We calculate the pair production rates for spin-1 or vector particles on spaces of the form M x R-1,R-1, with M corresponding to R-2 (flat), S-2 (positive curvature), and H-2 (negative curvature), with and without a background (chromo)magnetic field on M. Beyond highlighting the effects of curvature and background magnetic field, this is particularly interesting since vector particles are known to suffer from the Nielsen-Olesen instability, which can dramatically increase pair production rates. The form of ...
Spherically symmetric solutions of Einstein plus non-polynomial gravities
Deser, S.; Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (Springer Science and Business Media LLC, 2008-01-01)
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (first) derivative order of the Einstein equations in Schwarzschild gauge. Generically, the solutions exhibit both horizons and a singularity at the origin, except for one model that forbids spherical symmetry altogether. Extensions to arbitrary dimension with a cos...
Multipole moments of heavy vector and axial-vector mesons in QCD
Aliev, T. M.; Bilmis, S.; Savcı, Mustafa (American Physical Society (APS), 2020-03-09)
The magnetic and quadrupole moments of the vector and axial-vector mesons containing a heavy quark are estimated within the light-cone sum rules method. Our predictions on magnetic moments for the vector mesons are compared with the results obtained by other approaches.
Citation Formats
A. Arda and R. Sever, “Exact Solutions of the Morse-like Potential, Step-Up and Step-Down Operators via Laplace Transform Approach,” COMMUNICATIONS IN THEORETICAL PHYSICS, pp. 27–30, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62577.