Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride
Date
2009-09-07
Author
Rakap, Murat
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
Intrazeolite cobalt(0) nanoclusters were prepared by ion-exchange of Co2+ ions with the extraframework Na+ ions in the zeolite-Y followed by the reduction of Co2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. The intrazeolite cobalt(0) nanoclusters were isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, XPS, Raman spectroscopy and N-2 adsorption technique. The catalytic activities of intrazeolite cobalt(0) nanoclusters in the hydrolysis reaction of sodium borohydride solution in the absence or presence of added base were studied. They are found to be more active in basic solution than in aqueous solution without added base. They provide 36,000 total turnovers and a turnover frequency up to 880 mol H-2 (mol Co)(-1) h(-1) in the hydrolysis of basic sodium borohydride solution at 2 5.0 +/- 0.1 degrees C. The improved hydrogen generation rate, hydrogen generation efficiency, lower activation energy and the low cost make the intrazeolite cobalt(0) nanoclusters promising candidate as catalyst for the hydrogen generation from basic sodium borohydride solution. (C) 2009 Published by Elsevier B.V.
Subject Keywords
Process Chemistry and Technology
,
General Environmental Science
,
Catalysis
URI
https://hdl.handle.net/11511/62639
Journal
APPLIED CATALYSIS B-ENVIRONMENTAL
DOI
https://doi.org/10.1016/j.apcatb.2009.05.014
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-04-05)
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite (Pd(0)/SiO2-CoFe2O4) were in situ generated during the hydrolysis of ammonia borane, isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX, XPS and the N-2 adsorption-desorption techniques. All the results reveal that well dispersed palladium(0) nanoparticles were successfully supported on silica coated cobalt ferrite and the resulting Pd(0)/SiO2-CoFe2O4 are highly active, magnetica...
Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature
Akbayrak, Serdar; TONBUL, YALÇIN; Özkar, Saim (Elsevier BV, 2017-06-05)
Highly efficient dehydrogenation of formic acid (FA) at room temperature was achieved using palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) as catalysts. Pd-0/CeO2 was prepared by impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd((0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The catalytic activity of ...
Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics
Akbayrak, Serdar; Erdek, Pelin; Özkar, Saim (Elsevier BV, 2013-10-01)
When a solution of ammonia borane is added to the suspension of ruthenium(III) ions supported on hydroxyapatite, both reduction of ruthenium(III) to ruthenium(0) nanoparticles and hydrogen release from the hydrolysis of ammonia borane occur concomitantly at room temperature. Using the hydrogen evolution from the hydrolysis of ammonia borane as reporter reaction provides valuable insights to the formation kinetics of ruthenium(0) nanoparticles. Thus, the rate constants for the slow nucleation and autocatalyt...
Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2016-02-01)
Nanosilica stabilized rhodium(0) nanoparticles (Rh(0)/nanoSiO(2)), in situ formed from the reduction of rhodium(II) octanoate impregnated on the surface of nanosilica, are active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. Monitoring the hydrogen evolution enables us to follow the kinetics of nanoparticles formation. The resulting sigmoidal kinetic curves are analyzed by using the 2-step mechanism of the slow, continuous nucleation and autocatalytic surface g...
Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2017-07-05)
Palladium(0) nanoparticles supported on cobalt ferrite (Pd degrees/CoFe2O4) are found to be highly active catalyst, providing an unprecedented catalytic activity with a turnover frequency of 290 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at room temperature. However, the initial catalytic activity of Pd degrees/CoFe2O4 catalyst is not preserved after the reuse of the catalyst in hydrolytic dehydrogenation of ammonia borane. The stability of the catalyst is improved by using the pol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Rakap and S. Özkar, “Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride,”
APPLIED CATALYSIS B-ENVIRONMENTAL
, pp. 21–29, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62639.