Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Polynomial solutions of the Mie-type potential in the D-dimensional Schrodinger equation
Date
2008-04-30
Author
IKHDAİR, SAMEER
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
152
views
0
downloads
Cite This
The polynomial solution of the D-dimensional Schrodinger equation for a special case of Mie potential is obtained with an arbitrary l not equal 0 states. The exact bound state energies and their corresponding wave functions are calculated. The bound state (real) and positive (imaginary) cases are also investigated. In addition, we have simply obtained the results from the solution of the Coulomb potential by an appropriate transformation.
Subject Keywords
Diatomic molecules
,
Bound states
,
Schrodinger equation
,
Coulomb potential
,
Mie potential
URI
https://hdl.handle.net/11511/62664
Journal
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
DOI
https://doi.org/10.1016/j.theochem.2007.12.044
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Approximate analytical solutions of a two-term diatomic molecular potential with centrifugal barrier
Arda, Altug; Sever, Ramazan (2012-08-01)
Approximate analytical bound state solutions of the radial Schrodinger equation are studied for a two-term diatomic molecular potential in terms of the hypergeometric functions for the cases where q >= 1 and q = 0. The energy eigenvalues and the corresponding normalized wave functions of the Manning-Rosen potential, the 'standard' Hulthen potential and the generalized Morse potential are briefly studied as special cases. It is observed that our analytical results are the same with the ones obtained before.
On solutions of the Schrodinger equation for some molecular potentials: wave function ansatz
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrodinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, delta and nu are also given, where eta depends on a linear combination of the angular momentum quantum number l and the spatial dimensions D and delta is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigenso...
Exact solution of Schrodinger equation for Pseudoharmonic potential
Sever, Ramazan; TEZCAN, CEVDET; Aktas, Metin; Yesiltas, Oezlem (2008-02-01)
Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n <= 5 for some diatomic molecules.
Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum
Akçay, Hüseyin; Sever, Ramazan (2012-08-01)
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. IKHDAİR and R. Sever, “Polynomial solutions of the Mie-type potential in the D-dimensional Schrodinger equation,”
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
, pp. 13–17, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62664.