Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): Highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane
Date
2011-01-01
Author
Metin, Onder
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
264
views
0
downloads
Cite This
This paper reports the in-situ generation and catalytic activity of nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrene sulfonic acid-co-maleic acid), PSSA-co-MA, in the hydrolysis of ammonia borane (AB). PSSA-co-MA stabilized nickel(0) (PSMA-Ni) and cobalt(0) nanoclusters (PSMA-Co) having average particle size of 2.1 +/- 0.6 and 5.3 +/- 1.6 nm, respectively, were generated by in-situ reduction of nickel(II) chloride or cobalt(II) chloride in an aquoues solution of NaBH(4)/H(3)NBH(3) in the presence of PSSA-co-MA. The in-situ generated nanoclusters were isolated from the reaction solution and characterized by UV-Vis, TEM, XRD and FT-IR techniques. Compared with the previous catalyst systems, PSMA-Ni and PSMA-Co are found to be highly active catalysts for hydrogen generation from the hydrolysis of AB with the turnover frequency values of 10.1 min(-1) for Ni and 25.7 min(-1) for Co. They are also very stable during the hydrolysis of AB providing 22450 and 17650 turnovers, respectively. The results of mercury poisoning experiments reveal that PSMA-Ni and PSMA-Co are heterogeneous catalysts in the hydrolysis of AB. Herein, we also report the results of a detailed kinetic study on the hydrogen generation from the hydrolysis of AB catalyzed by PSMA-Ni and PSMA-Co depending on catalyst concentration, substrate concentration, and temperature along with the activation parameters of catalytic hydrolysis of AB calculated from the kinetic data. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Nickel
,
Cobalt
,
Nanoclusters
,
Hydrolysis
,
Ammonia-borane
URI
https://hdl.handle.net/11511/62694
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2010.10.070
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane
Karahan, Senem; Özkar, Saim (2015-02-09)
Herein, we report the in situ generation, isolation and characterization of cobalt(0) nanoparticles, stabilized by poly(4-styrenesulfonic acid-co-maleic acid), PSSMA, and their catalytic activity in the hydrolysis of hydrazine borane (HB). Cobalt(0) nanoparticles having average particle size of 3.1 +/- 0.5 nm were prepared by in situ reduction of cobalt(II) chloride in aqueous solution of hydrazine borane in the presence of PSSMA, isolated magnetically from the catalytic reaction solution using a magnet, an...
Water soluble polymer stabilized iron(0) nanoclusters: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane
Dinç, Melek; Metin, Önder; Özkar, Saim (Elsevier BV, 2012-3)
Water soluble polymer stabilized iron(0) nanoclusters were prepared from the reduction of iron(III) chloride by sodium borohydride (SB) and ammonia borane (AB) mixture in the presence of polyethylene glycol (PEG) as stabilizer and ethylene glycol as solvent at 80 degrees C under nitrogen atmosphere. PEG stabilized iron(0) nanoclusters were isolated from the reaction solution by centrifugation and characterized by UV-Vis, TEM, HRTEM, XRD, ICP-OES and FT-IR methods. The particle size of PEG stabilized iron(0)...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Tungsten(VI) oxide supported rhodium nanoparticles: Highly active catalysts in hydrogen generation from ammonia borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2021-04-01)
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turn...
Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane
Rakap, Murat; Özkar, Saim (2010-02-01)
Zeolite confined palladium(0) nanoclusters were prepared by a two step procedure: incorporation of Pd2+ ions into the zeolite-Y by ion-exchange followed by the reduction of Pd2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. Zeolite confined palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, X-ray photoelectron spectroscopy and N-2 adsorption technique. These nanoclusters are isolable, redispersible a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Metin and S. Özkar, “Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): Highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 1424–1432, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62694.