Hide/Show Apps

Eigenvalues and eigenfunctions of Woods-Saxon potential in PT-symmetric quantum mechanics

Berkdemir, Ayse
Berkdemir, Cuneyt
Sever, Ramazan
Using the Nikiforov-Uvarov method which is based on solving the second-order differential equations, we firstly analyzed the energy spectra and eigenfunctions of the Woods-Saxon potential. In the framework of the PT-symmetric quantum mechanics, we secondly solved the time-independent Schrodinger equation for the PT and non-PT-symmetric version of the potential. It is shown that the discrete energy eigenvalues of the non-PT-symmetric potential consist of the real and imaginary parts, but the PT-symmetric one has a real spectrum. Results are obtained for s-states only.